Основы электроники для начинающих

Содержание курса “Электроника для начинающих”

3.1. Резисторы. Виды резисторов. Сопротивление. Постоянные, переменные, подстроечные резисторы.

3.2. Маркировка резисторов. Цифирно-буквенная маркировка резисторов.

3.3. Цветовая маркировка резисторов. Измерение сопротивления.

3.4. Маркировка SMD резисторов.

3.5. Классы точности резисторов. Стандартные номиналы резисторов.

3.6. УГО резисторов. Мощность рассеивания резисторов.

3.7. Расчет мощности рассеивания резистора.

3.8. Последовательное соединение резисторов.

3.9. Параллельное соединение резисторов.

3.10. Смешанное соединение резисторов.

3.11. Моделирование электронных схем в среде Everycircuit.

4.1. Закон Ома. Открытие закона Ома. Электрический ток. Сопротивление.

4.2. Расчет и изготовление проволочного резистора. Удельное сопротивление. Температурный коэффициент сопротивления.

4.3. Закон Ома для участка цепи. Напряжение. Электродвижущая сила (ЭДС).

4.4. Закон Ома для полной цепи. Внутреннее сопротивление источника питания.

5.1. Первый закон Кирхгофа.

5.2. Второй закон Кирхгофа.

  1. Мощность. Энергия. Работа.
  2. Краткое подведение основных законов электрических цепей постоянного тока.

8.1. Светодиоды. Принцип работы. УГО.

8.2. Вольтамперная характеристика (ВАХ). Линейная и нелинейная зависимости. Прямая ветвь ВАХ.

8.3. Обратная ветвь ВАХ.

8.4. ВАХ светодиодов. Расчет параметров токоограничивающих резисторов.

8.5. Макетные платы. Виды и применение макетных плат.

8.6. Первая схема на макетной плате.

8.7. Последовательно соединение светодиодов. Баланс мощностей.

8.8. Параллельное соединение светодиодов. Обоснование выбора схемы соединения светодиодов.

8.9. Двухцветные и RGB-светодиоды.

9.1. Конденсаторы. Основные свойства. Емкость конденсаторов.

9.2. Устройство плоскостного конденсатора. Взаимосвязь основные параметров конденсатора.

9.3. Принцип работы конденсатора.

9.4. Виды конденсаторов: постоянный, переменный, подстроечный. Электролитические конденсаторы. УГО конденсаторов.

9.5. Маркировка конденсаторов. Числовое кодирование. Маркировка электролитических конденсаторов.

9.6. Напряжение конденсаторов. Классы точности конденсаторов. Температурный коэффициент емкости. Тангенс угла потерь.

9.7. Последовательно и параллельное соединение конденсаторов.

9.8. RC-цепь. Основные параметры и свойства.

10.1. Магнитное поле. Постоянный магнит. Магнитная проницаемость. Ферромагнетики. Парамагнетики. Диамагнетики. Электромагнит.

10.2. Электромагнитное реле. Устройство. Принцип работы. Релейная характеристика. УГО катушки индуктивности и реле. Основные параметры реле.

10.3. Практическое применение реле. Преимущества и недостатки электромагнитных реле.

10.4. Электромагнитная индукция. ЭДС самоиндукции. Индуктивность. Сравнение свойств катушки индуктивности и конденсатора. Включение и отключение цепи с катушкой. Назначение обратного диода. RL-цепь. Постоянная времени цепи с катушкой. Реактивное сопротивление катушки и конденсатора.

11.1. Переменный ток. Период. Частота. Действующее (эффективное) значение. Амплитудное значение. Мгновенное значение.

11.2. Согласное и встречное включение источников питания. Фаза. Электрические градусы. Сдвиг фаз.

11.3. Свойства синусоидальной функции. Свойства катушки индуктивности и конденсатора в цепи переменного тока.

12.1. Физика процесса пайки. Набор начинающего «паяльщика».

12.2. Пайка проводов.

12.3. Пайка электронных компонентов.

12.4. Сборка и проверка работы осциллографа DSO138.

12.5. Калибровка осциллографа.

13.1. Блок питания. Структура блока питания. Импульсные и линейные блоки питания.

13.2. Конструкция и принцип работы трансформатора. Мощность трансформатора.

13.3. Потери энергии в трансформаторе. Активная, реактивная, полная мощность.

13.4. Определение параметров трансформатора для блока питания. Выбор плавкого предохранителя. Определение обмоток трансформатора.

13.5. Определение числа витков обмоток трансформатора опытным путем. Последовательное и параллельное соединение обмоток. Встречное и согласное включение обмоток трансформатора.

14.1. Выпрямитель. Однополупериодная схема выпрямления. Определение параметров выпрямительных диодов. Диоды Шоттки.

14.2. Двухполупериодная схема выпрямления. Диодный мост.

  1. Сглаживание выпрямленного напряжения. Определение параметров сглаживающего конденсатора.
  2. Резисторный делитель напряжения. Расчет. Преимущества и недостатки.

17.1. Стабилитрон. Принцип действия. Основные параметры. Принцип расчета параметров токоограничивающего резистора.

17.2. Маркировка стабилитронов. Выбор стабилитрона. Справочная информация на стабилитрон.

17.3. Динамическое сопротивление стабилитрона.

17.4. Расчет параметров стабилитрона и токоограничивающего резистора. Последовательное соединение стабилитронов.

18.1. Линейные стабилизатора напряжения. Принцип работы. Виды.

18.2. Линейные стабилизаторы с фиксированным выходным напряжением. Мощность рассеивания. Коэффициент полезного действия. Определение основных параметров.

18.3. Выбор линейного стабилизатора напряжения. Даташит.

18.4. Линейные стабилизаторы с регулировкой напряжения: LM317, LM338. Типовые схемы включения.

18.5. Расчет параметров стабилизатора тока на LM317. Подключение мощных светодиодов.

18.6. Расчет параметров радиатора. Определение параметров вентилятора.

18.7. Принцип выбора вентилятора для системы охлаждения.

19.1. Расчет параметров и намотка вторичной обмотки трансформатора для подключения USB разъема к блоку питания.

19.2. Схема подключения USB разъема к блоку питания.

20.1. Транзисторы. Режимы работы транзисторов. Сравнение свойств переменного резистора и биполярного транзистора.

20.2. Принцип работы биполярного транзистора.

20.3. Расчет параметров транзисторного ключа на биполярном транзисторе.

20.4. Исследование работы транзисторного ключа.

20.5. Транзистор Дарлингтона.

20.6. Фоторезисторы. Принцип работы. Датчики освещенности.

20.7. Сумеречный автомат. Принцип работы. Сборка. Настройка.

21.1. Транзисторный усилитель. Устройство и принцип действия. Нагрузочная прямая. Рабочая точка транзистора. Определения параметров резисторов в цепи базы и коллектора.

21.2. Сборка и настройка транзисторного усилителя.

21.3. Типовые схемы транзисторный усилителей.

22.1. Полевые транзисторы. Полевой транзистор с pn-переходом. Устройство, принцип работы, особенности. УГО. Типовая схема включения.

22.2. Полевые транзисторы с изолированным затвором. Особенности. Устройство и принцип действия. Полевой транзистор с изолированным затвором с встроенным каналом. Полевой транзистор с изолированным затвором с индуцированным каналом. УГО.

Читайте также:
Правильное утепление пола по лагам

22.3. Основные параметры и проверка работы MOSFET.

22.4. Исследование работы MOSFET в режиме ключа.

22.5. Выбор биполярного транзистора в интернет-магазинах. Даташиты полевых и биполярных транзисторов.

23.1 Электронный предохранитель. Схема. Принцип работы.

23.2 Электронный предохранитель. Сборка. Настройка.

24.1. Разводка печатной платы. Введение. Обзор схемы.

24.2. Разводка печатной платы в Sprint-Layout 6.0

24.3. Разводка печатной платы. Сумеречный автомат.

24.4. Разводка печатной платы. Распечатка.

24.5. Изготовление печатной платы.

24.6. Пайка и настройка сумеречного автомата.

25.1. Конечная схема блока питания. Альтернативный вариант схемы.

25.2. Разводка печатной платы и пайка блока питания.

25.3. Тестирование блока питания

26.1. Микросхемы. Таймер 555. Часть 1. Базовые положения.

26.2. Таймер 555. Часть 2. Режим одновибратора.

26.3. Таймер 555. Часть 3. Автоколебательный режим.

26.4. Таймер 556. Схема сирены.

27.1. Операционные усилители. Основные положения.

27.2. Принцип работы операционного усилителя. Неинвертирующий усилитель.

27.3. Операционный усилитель. Буфер. Согласование сопротивлений.

27.4. Инвертирующий усилитель.

27.6. Операционный усилитель. Усиление переменного напряжения.

27.7. Дифференциальный усилитель.

27.8. Инструментальный усилитель.

27.9. Фильтр низких и высоких частот на операционном усилителе.

27.10. Основные параметры операционных усилителей в даташитах.

28.1. Компаратор. Устройство. Принцип работы. Открытый коллектор.

28.2. Датчики уровня освещенности на компараторе. Опорное напряжение. Гистерезис.

28.3. Компаратор. Даташит.

29.1. Акустический выключатель. Структурная схема. Микрофонный усилитель.

29.2. Акустический выключатель. Установка порога срабатывания. Борьба с дребезгом. Формирование импульса.

29.3. Акустический выключатель. Триггер. RS-триггер. D-триггер. Делитель частоты.

29.4. Акустический выключатель. Транзисторный ключ и реле. Окончательная схема.

29.5. Акустический выключатель. Разводка, изготовление печатной платы. Пайка, проверка работы.

30.1. Усилители звука. Основные параметры и характеристики.

30.2. Даташит LM386.

30.3. Усилитель и генератор на LM386.

30.4. Сборка и проверка работы усилителя звука на LM386.

30.5. Даташит TDA2030.

30.6. Усилитель звука на TDA2030 + сирена.

30.7. Лазерная сигнализация.

30.8. Определение параметров и выбор типа усилителя мощность более 20 Вт.

Азбука электронщика: увлекательная теория, занимательная практика и полезные решения для начинающих

Замечали ли вы, что интерес к электронике, радиотехнике, конструированию радиоэлектронных приборов в последнее время заметно возрос?

Учебные заведения все чаще обращают свой взор в сторону подготовки инженеров в области радиотехники и электроники. Многие специалисты, достигшие определенных успехов в своей профессии, с удовольствием делятся своими знаниями на просторах всемирной паутины. Но есть проблема – отрыв теории от практики. Одно дело знать из школьного курса закон Ома, а совсем другое – спалить транзистор или микросхему, подав неверное напряжение. Как начинающему разобраться, понять причину и навсегда запомнить этот закон и этот примечательный случай?

Понимая это, Мастер Кит начал выпуск серии наборов «Азбука электронщика».

Серия будет состоять из нескольких наборов с повышающимся уровнем сложности, и охватывать весь основной спектр радиоэлектронных компонентов. Цель серии – дать возможность на практике закрепить теоретические знания, полученные в учебных заведениях, понять работу элементов электронных схем, попробовать свои силы в разработке этих схем, пробудить интерес к этой области знаний.

NR03 «Основы схемотехники» — первый из серии наборов «Азбука электронщика», который на практике познакомит с базовыми элементами электроники: резисторами, конденсаторами, диодами и транзисторами. Особенностью набора является применение беспаечной технологии и сборки на макетной плате, что позволяет использовать компоненты многократно. Автономное питание от батареи исключает возможность поражения электрическим током и повреждение компонентов.

Многие из предлагаемых для сборки схем могут иметь практической применение – простейшие охранные сигнализации, детекторы и датчики, таймеры и т.п. Поскольку набор содержит более 100 электронных компонентов, из них можно собрать куда больше устройств, чем описано в обучающем пособии или использовать эти компоненты в собственных конструкциях для постоянного применения.

В красочной брошюре, выполненной в отличном полиграфическом качестве, даны описания компонентов, входящих в состав набора, и немного теории о каждом из них; даны сведения о внешнем виде и маркировке. Электрические схемы нарисованы в соответствии со стандартом и помогают научиться правильно читать их. Для каждой электрической схемы приведена монтажная схема на макетной плате, собрать которую сможет даже самый неискушенный начинающий электронщик.

Рассмотрим, например, простейший индикатор полярности подключаемой к электронной схеме батареи. Из приведенных ниже рисунков, взятых из брошюры, можно убедиться, что электрическая и монтажная схемы легко читаемы и сопоставимы между собой.

В зависимости от полярности батареи будет светиться один из цветных светодиодов – либо зеленый, либо красный, который будет сигнализировать об ошибке подключения источника питания. Чем не практический результат при весьма малых затратах? Не говоря уже о том, что даже в такой нехитрой схеме действуют несколько физических процессов и приборов, которые теоретически рассматриваются на уроках и занятиях по физике: химический источник тока, прохождение тока через проводник, излучение света полупроводником, закон Ома, принцип действия полупроводникового диода. Чем больше юному исследователю захочется углубиться в эти процессы, тем лучше. Тем более, что сейчас не составит труда получить через интернет любую информацию по заинтересовавшему вопросу. А навыки самообразования в процессе такого обучения помогут в любой профессии.

Читайте также:
Пороги межкомнатных дверей: монтаж

Всего в брошюре рассматривается 15 схем разного уровня сложности: параллельное и последовательное включение резисторов, конденсаторов и светодиодов; заряд и разряд конденсатора в электронной схеме; принцип действия транзистора; соединение компонентов в схеме.

В состав компонентов набора входят светодиоды разного цвета, схема мигалки и простейшего электромузыкального инструмента, которые неизменно привлекают внимание самых маленьких электронщиков. Также особенностью набора является раздел «Проверь свои знания». В этом разделе приведены схемы с ошибками, которые внимательный читатель, собравший все предлагаемые схемы не формально, а с желанием разобраться в их работе, без труда сможет найти и исправить.

В качестве примера приведем схему с неверным значением сопротивления резистора в цепи, ограничивающей ток через светодиод:

Такой пример позволяет на практике понять порядок значения тока через реальный светодиод, приучит внимательно читать электрические схемы и проверять собранные устройства.
Изучив все представленные в наборе схемы, собрав и испытав их на практике, с учетом числа компонентов, входящих в состав набора, можно найти в литературе и всемирной сети еще несколько десятков электронных устройств, собрать их и подробно исследовать.

Набор поставляется в красочно оформленной коробке оригинального дизайна и может служить отличным подарком.

Мы уверены, что новый набор серии «Азбука электронщика» компании Мастер Кит, а также следующие наборы серии, помогут заинтересовать юные умы и, возможно, помочь в выборе несомненно интересной и нужной профессии в сферах радиоэлектроники, микросхемотехники, других инженерных и научных областях знаний. Ведь от малого до великого всего один шаг.

Основы на пальцах. Часть 1

Довелось мне однажды преподавать электронику в одной шараге. Нетривиально занятие, скажу я вам. 🙂 Дабы облегчить усвоение материала я вводил ряд упрощений. Совершенно бредовых и антинаучных, но более менее наглядно показывающих суть процесса. Методика «канализационной электрики» успешно показала себя в полевых испытаниях, а посему будет использована и тут. Хочу лишь обратить внимание, что это всего лишь наглядное упрощение, справедливое для общего случая и конкретного момента, чтобы понять суть и к реальной физике процесса не имеющая практически никакого отношения. Зачем оно тогда? А чтобы проще запомнить, что к чему и не путать напряжение и ток и понимать как на все это влияет сопротивление, а то я от студентов такого наслушался…

Ток, напряжение, сопротивление.

Канализация как пример цепи

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще 😉 ).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Сила тока в цепи пропорциональна напряжению и обратно пропорциональная полному сопротивлению цепи.
I = U/R
U – величина напряжения в вольтах.
R – сумма всех сопротивлений в омах.
I – протекающий по цепи ток.

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3. Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Читайте также:
Ремонт кафеля в ванной своими руками: простые способы

Закон Кирхгоффа.

Закон Кирхгоффа на примере

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

111 thoughts on “Основы на пальцах. Часть 1”

Мой коментарий к сожалению не по теме статьи, да и вообще не стоит его тут размещать. Я пишу сюда просто потому что я нигде не нашел какой бы то ни было контактной информации. Вам не кажется что это так не должно быть? В общем, я бы хотел выразить общее впечатление от сайта и указать на его недостатки. А недостотаки есть. В общем сайт то действительно здоровский, да и дизайн хороший, но только если издалека смотреть. Возможно я бы лучше и не сделал, но дизайн выглядит сырым. Серьезно. Я не стану придираться на шрифт названия сайта, потому что она, судя по всему, стилизована специально под какой-то дурацкий шрифт надписей на советской электроннике. Стоит взглянуть в первую очередь на самый низ. В принципе, если просто сделать красиво облако тегов, то у меня пропадут всяческие претензии к дизайну. Облако тегов выглядит просто ужасно. Прям совсем. Ну а потом стоит подумать над целесообразностью использования капса в заголовках, шрифта в меню наверху справа, пунктов RSS и RSS->MAIL.
Вот, что говорит по этому поводу cooloven: «верхнее меню крайне не втему на мой взгляд содержанием ссылок и их порядком, карта сайта да, полный бред… ессно капсы и заголовки тоже». Так что вот.
И все же, если Вы боитесь спама или еще чего такого, то сделайте хотя бы форму специальную, где можно написать что-то в личку. А то сайт какой-то безличный получается.
Я это все написал, потому что мне реально понравился этот сайт и я бы хотел, чтобы он стал лучше. Надеюсь, что никого не обидел.

Читайте также:
Ручной рубанок : деревянные и металлические модели. Особенности устройства и назначение инструмента. Как выбрать?

Облако тэгов делает плагин и мне совершенно влом что либо ковырять. А то что там так сильно все вылазит, так просто теги еще несбалансированно расставляются.

RSS это аббревиатура. Так что пусть будет капс.

Карта сайта нужна из SEO соображений, чтобы поисковики быстрей хавали и страницы не проваливались дальше 3го уровня. Ну и я ей частенько пользуюсь.

Где ты увидел капсы в заголовках?

О каком верхнем меню идет речь? О томе где Главная, о Сайте, Файлы? Так все верно. Там статичные страницы которые всегда должны быть на виду.

Если же по Рубрикатору, то тут надо тему править, причем глобально так. Причем еще неизвестно что главней, поэтмоу сортирвока по алфавиту.

О кнопке добавить комментарий: Все вопросы и претензии к создателям WordPress =))))

А вообще сайт узкотехнической направленности, а потому на дизайн глубоко похую, лишь бы было адекватночитабельно.

Насчет добавления комментариев. Есть плагин http://wordpress.org/extend/plugins/wordpress-thread-comment/ понимает ветки от Brian’s Threaded Comments, аякс, вроде должен отправлять ответы на комментарии(я не стал включать). Но его нужно немного допилить, в изначальной ворме мне сначала не понравился.

И еще у тебя нет ссылок на следующие/предыдущие посты.

[quote]А вообще сайт узкотехнической направленности, а потому на дизайн глубоко похую, лишь бы было адекватночитабельно.[/quote]
Полностью согласен =)

Радиоэлектроника для новичка

Электроника для новичка

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел Старт.

На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Ну, а для начала, рекомендуем научиться паять.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.

Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.

Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.

Читайте также:
Складные стулья из Ikea: раскладные деревянные конструкции Терье и белые пластиковые модели со спинкой из Ikea, отзывы

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) – это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.

Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.

Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Простой апгрейд мультиметра DT – 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.

Приводится даташит на микросхему TA8201AK, а также пример тестового усилителя, собранного по схеме из него. Показано видео работы усилителя. На живом примере разбираемся с основными характеристиками микросхемы TA8201AK, графиками из даташита на данный интегральный усилитель.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя – это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.

Собираем радиоуправляемое реле на базе готового радиомодуля.

Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).

Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.

Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.

Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.

Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.

Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.

Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.

Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.

Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.

Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.

Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.

Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: “А как управлять этой лентой?”. Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.

Читайте также:
Светодиодный прожектор своими руками: необходимые материалы и порядок сборки

Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.

Электроника для начинающих

Электроника – эта одна из передовых областей науки и техники, которая занимается разработкой и практическим применением различных электронных приборов и устройств. Ребёнок с первых лет своей жизни уже сталкивается с массой электронных устройств. Люди любого возраста выказывают желание познать основы современной электроники для начинающих. В этой статье даны понятия, на которых основываются азы электроники.

Самый простой самоучитель

Пути совершенствования (микроминиатюризация)

С момента появления твердотельной электроники она начала развиваться темпами математической прогрессии. Активные радиоэлементы, по сравнению со старыми прототипами, уменьшились по размеру в тысячи раз. Некоторые детали стали измеряться в нанометрах. Большие электрические схемы стали помещаться в одном чипе (микросхеме).

Внедрение новых технологий открыло путь резкому развитию микроэлектроники. Это видно по совершенствованию приборов сотовой связи. За относительно короткий срок простой сотовый телефон превратился в смартфон с огромными возможностями. Громоздкие по габаритам маломощные компьютеры были заменены на ноутбуки. Появилось много различных миниатюрных электронных гаджетов. Прогресс в совершенствовании продуктов электронной промышленности с каждым днём только набирает обороты.

Познавательная электроника для начинающих должна начинаться с усвоения учебников, видео программ по основам цифровой электроники. Нужно понимать, что такое микросхематика, практическая электроника, как составляются цепи в электронных схемах. Самоучители пошагово дадут возможность ученику познать основы электроники.

Плата электронной схемы

Микросхемотехника

Это часть микроэлектроники, которая занимается исследованиями и разработкой электрических структурных построений цепей в интегральных микросхемах. Они представляют собой микроэлектронные изделия, выполняющие функции преобразования, обработки сигналов и накопления информации.

Важно! Микросхемы имеют высокую плотность соединённых элементов на площади в несколько мм2. Их элементы не могут быть отделены от кристалла и подложки.

Микросхемотехника

Проектированием и монтажом интегральных микросхем (ИМ) занимаются схемотехники. ИМ бывают нескольких видов:

  • плёночные – все элементы и межэлементные компоненты выполнены в виде плёнок;
  • гибридные – содержат кристаллы;
  • аналоговые – предназначены для обработки сигналов, изменяющихся по закону непрерывной функции;
  • цифровые – обработка сигналов по закону дискретной функции.

Практическая электроника

Практическое изучение электроники с нуля начинается с понимания принципов работы электронных приборов и устройств, функционирование которых основано на взаимодействии электромагнитных полей и свободных электрических зарядов. Описание этих процессов можно найти во всех учебниках по радио,- и микроэлектронике. Особенно помогают в этом отношении видео уроки в интернете. Азы современной электроники в практической области постигаются приобретением знаний по следующим вопросам:

  1. Построение цепей;
  2. Полупроводники;
  3. Сигналы и измерения;
  4. Электропитание схем;
  5. Цифровая электроника.

Построение цепей

Основой создания различных электрических схем являются правила построения цепей. Те же принципы построения электрических связей распространяются и на структуру микросхем. Твёрдое знание самых важных законов Ома и Кирхгофа позволяют понять логику создания линий, связующих компоненты электронных схем.

Обратите внимание! Без изучения базовых законов физики и электротехники начать овладевать основами электроники с нуля невозможно. Именно эти знания открывают все секреты создания электронных схем. Можно часами простоять, наблюдая за работой тех или иных сложных устройств, но без знаний основ электроники понять механизмы их действия не получится.

Полупроводники

В мире микроэлектроники полупроводники занимают важное место. Для того чтобы понять принцип их действия, нужно знать их физические возможности. Полупроводники меняют своё сопротивление в зависимости от нагрева. С повышением температуры сопротивление падает, в условиях низких температур полупроводники приобретают свойства диэлектриков.

Полупроводники на плате

К полупроводникам относятся такие радиодетали, как:

  • диоды;
  • транзисторы;
  • тиристоры.

Сигналы и измерения

Сигналы – это носители информации. Они передаются электронами электрической цепи. Величина заряженной частицы служит единицей измерения энергетического заряда. Измерения и исследования сигналов в электронике проводятся с помощью осциллографов. Цифровой прибор производит математическую обработку полученных результатов.

Цифровой осциллограф предназначен для профессиональных электронщиков и стоит довольно дорого. Для начинающих любителей подойдут недорогие модели отечественного производства – С1-73 и С1-101.

Электропитание схем

Энергообеспечение электронных схем осуществляется через специальные блоки питания. Сетевые импульсные блоки питания называют электронными трансформаторами. Это простые источники питания, работающие от сети 220 вольт. В сети интернет можно приобрести довольно дешёвые модели китайского производства.

Цифровая электроника

Основы цифровой электроники для начинающих базируются на понятии двоичной системы (ноль и единица) и алгебраической логике. В самоучителях и разных учебниках даются разъяснения, что такое базовые логические элементы электронных схем. К ним относятся триггеры, регистры, дешифраторы и микроконтроллеры.

Читайте также:
Рейтинг садовых качелей - ТОП 7 лучших и советы по выбору

Цифровая электроника

Цифровая технология передачи сигналов кодирует, а после доставки в нужное место дешифрует их. Этим добиваются чистоты информационных сигналов, защищённых от каких-либо помех. Примером этому служит цифровое телевидение.

Основные разделы и направления

Сюда относятся:

  • исследования протекания процессов в вакууме и твёрдой массе;
  • изучение квантовой электроники;
  • путь от прототипа к готовому устройству.

Вакуумные среды и твёрдые тела

Сфера вакуумной электроники занимается следующим:

  • проектирование и производство электронных ламп;
  • изготовление сверхчастотных магнетронов, клистронов и аналогичных приборов;
  • производство фотоэлементов, индикаторов и различных фотоэлектронных устройств.

Электроника в твёрдых телах занимается изучением и совершенствованием полупроводников, а также изготовлением на их основе радиоэлектронных компонентов. Вместе с этим этот раздел уделяет внимание следующим вопросам:

  • проектирование и создание электронных сфер, связанных с выращиванием кристаллов;
  • нанесение диэлектрических и металлизированных плёнок на поверхности полупроводников;
  • создание теоретической базы, подкреплённой практикой, по производству технологии выращивания плёнок заданной формы и с соответствующими техническими характеристиками;
  • поиск новых решений по управлению процессами, происходящими на поверхности полупроводников;
  • совершенствование и разработка новых технологий по получению наночастиц.

Квантовая электроника

Квантовая электроника изучает и создаёт приборы и устройства, занимающиеся обработкой информационных сигналов на основе движения элементарных частиц. Квантовая теория о свойствах электронов и других атомных элементов стала базой освоения технологий, создающих мощные лазеры. На основе последних разработок квантовой электроники появилась перспектива построения квантового компьютера.

От прототипа к готовому продукту

В связи с совершенствованием электронных схем в геометрической прогрессии путь от прототипа нового электронного устройства до массового производства готового продукта может занимать от 2,3-х до нескольких месяцев. Это заметно по постоянному обновлению ассортимента на рынке электронной аппаратуры.

Полученные знания основ электроники помогут новичку в этой области устранить мелкие поломки, выявить и заменить повреждённые компоненты электронных схем. Это позволит не выглядеть «чайником» в глазах электротехников, выполняющих ремонтные работы бытовых электронных приборов, что иногда приносит существенный экономический эффект.

Видео

Электротехника для чайников

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.

Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.

Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.

Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.

Зависимость между всеми тремя рассмотренными величинами в цепи постоянного тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.

Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением.

Читайте также:
Сверлильный станок на 12В из металла и 775-го мотора

Удельное сопротивление веществ можно найти в интернете в виде таблиц.

Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.

Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!

Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.

Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед. Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).

Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.

Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, Джеймсом Джоулем и Эмилием Ленцем. Закон назвали закон Джоуля-Ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах.

Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.

Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.

Читайте также:
Плитка Sant Agostino: особенности продукции

Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.

Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.

Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.

Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: Саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.

Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.

Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.

И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.

Читайте также:
Подушка «страус»: описание с фото, отзывы

Основы электроники для начинающих

Что такое инвертор напряжения

Для преобразования постоянного тока в переменный применяют специальные электронные силовые устройства, называемые инверторами. Чаще всего инвертор преобразует постоянное напряжение одной величины в переменное напряжение другой величины. Таким образом, инвертор — это генератор периодически изменяющегося напряжения, при этом форма напряжения может быть синусоидальной, приближенной к синусоидальной или импульсной. Инверторы применяют как в качестве самостоятельных устройств, так и в составе систем бесперебойного электроснабжения (UPS) .

Плата Ардуино

Встраиваемая электроника (Embedded electronics) присутствует в бесчисленном количестве устройств и приборов, в основе работы которых лежат микроконтроллеры. Микроконтроллер – это компактная интегральная схема, которая управляет определенной операцией во встраиваемой системе ( E mbedded system). Arduino – платформа для электронного прототипирования с открытым исходным кодом, предложила первую попытку просто встроить системы, представив более широкую концепцию одноплатных микроконтроллеров. Эта концепция была настолько революционной, что сейчас большая часть прототипов .

Электронные приборы и устройства

Электронные приборы и устройства занимают центр, место в электронике. Они являются прямыми или косвенными объектами исследований в физической электронике и служат основными элементами при инженерных разработках в технической электронике. Физические явления, связанные с движением электронов, но не реализованные в электронных приборах (например, космические лучи, распространение радиоволн и др.), относятся не к физической электронике, а к соответствующим разделам физики (в частности, радиофизики). Аналогично аппаратуру, даже содержащую отдельные электронные узлы .

PartSim: анализ переменного тока

PartSim – это веб-приложение, которое позволяет создавать и моделировать электронные схемы без установки программного обеспечения на ваш компьютер. Все, что вам нужно, это подключение к Интернету и браузер. В этой статье из серии PartSim мы продолжим исследование возможностей этой мощной системы электронного моделирования. Изменяя частоту напряжения входных генераторов, можно использовать анализ переменного тока для наблюдения за поведением электрической или электронной схемы. Таким образом, можно изучить частотные характеристики компонентов, особенно индуктивных и емкостных .

Основные параметры выпрямительных диодов

Для выпрямления низкочастотных переменных токов, то есть для превращения переменного тока в постоянный или пульсирующий, служат выпрямительные диоды, принцип действия которых основан на односторонней электронно-дырочной проводимости p-n-перехода. Диоды данного типа применяются в умножителях, выпрямителях, детекторах и т. д. Производятся выпрямительные диоды с плоскостным либо с точечным переходом, причем площадь непосредственно перехода может составлять от десятых долей квадратного миллиметра до единиц квадратных сантиметров, в зависимости от номинального .

Онлайн-симулятор PartSim

PartSim – это веб-приложение (онлайн-стимулятор) , которое позволяет создавать и моделировать электронные схемы в режиме онлайн без необходимости установки другого программного обеспечения на ваш компьютер. Все, что вам нужно, это интернет-соединение и, конечно же, интернет-браузер. Любители электроники могут успешно использовать PartSim. Вам не нужно загружать какие-либо программы, совместимые с вашей операционной системой. С его помощью вы можете сохранять свои проекты в Интернете, чтобы открывать их с любого компьютера .

Трехфазный мостовой выпрямитель - принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные. Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора .

Кварцевый резонатор

Современная цифровая электроника, изобилующая микропроцессорами и микроконтроллерами, просто немыслима без тактовых колебаний. А где получение тактовых колебаний — там функционирование генератора и колебательной системы, и где колебательная система — там обязательно проявляют себя и явление резонанса и такой важный параметр как добротность. Здесь то и знакомимся мы с кварцевыми резонаторами. Кварцевый резонатор в электронной схеме выступает альтернативой любому колебательному контуру. По принципу работы кварцевый резонатор является автогенератором .

Что такое электронно-дырочный переход p-n-переход

К полупроводникам относятся вещества с удельным сопротивлением от 10 -5 до 10 2 ом х м. По своим электрическим свойствам они занимают промежуточное положение между металлами и изоляторами. Сопротивление полупроводника подвержено влиянию многих факторов: оно сильно зависит от температуры (с ростом температуры сопротивление уменьшается), зависит от освещения (под действием света сопротивление уменьшается) и т. д. В зависимости от рода примеси в полупроводнике преобладает одна из проводимостей – электронная ( n-типа ) или дырочная ( р-типа ). Основной частью любого полупроводникового прибора .

Электронная лампа

Для того чтобы понять и объяснить принципы действия электронных приборов, необходимо ответить на следующий вопрос: каким образом электроны освобождаются? На него мы ответим в настоящем статье. В соответствии с современной теорией атом состоит из ядра, имеющего положительный заряд и сосредоточивающего в себе почти всю массу атома, и расположенных вокруг ядра отрицательно заряженных электронов. Атом как целое электрически нейтрален, поэтому заряд ядра должен равняться заряду окружающих его электронов. Поскольку все химические вещества состоят из молекул, а молекулы из атомов .

Ссылка на основную публикацию