Расчёт катушки индуктивности: как найти число витков в катушке, формула

Расчет катушки индуктивности

При построении электронных устройств часто приходится сталкиваться с индуктивным элементом схемы. Когда на чертеже указано только значение индуктивности L, то расчет катушки индуктивности приходится выполнять самостоятельно. В интернете есть множество программ, позволяющих выполнять расчёт индуктивности катушек онлайн при помощи специального калькулятора. Зная то, как устроен элемент, можно вручную произвести все вычисления.

Внешний вид катушки

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока. При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.

Применение L в колебательном контуре

Какие параметры есть у катушки

От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:

  • L – индуктивность;
  • R пот – сопротивление потерь;
  • Q – добротность;
  • свой резонанс и паразитарная ёмкость;
  • коэффициенты ТКИ и ТКД.

Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.

При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:

R пот = rω + rd + rs + re.

Слагаемые формулыэто потери:

  • rω – в проводах;
  • rd – в диэлектрике;
  • rs – в сердечнике;
  • re – на вихревые токи.

В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.

Добротность двухполюсника определяется по формуле:

где ω*L = 2π*L – реактивное сопротивление.

При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.

ТКИ – показатель, описывающий зависимость L от Т0С.

ТКД – показатель, описывающий зависимость добротности от Т0С.

Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.

Конструкция катушек

Зачем нужен расчёт индуктивности

Расчет индуктивности нужен, потому что конструктивно это могут быть по-разному выполненные катушки. Применение дросселей в разных отраслях электрики и электроники, их работа под влиянием постоянного и переменного тока требуют тщательного подбора индуктивности, добротности и стабильности работы. При выполнении своими руками дросселей заданного параметра L нужно выполнить расчёт. Для каждого типа индуктивного двухполюсника используется своя формула.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

Читайте также:
Недорогой ремонт в ванной комнате своими руками это возможно

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

L = (μ0/2π)*l*( μe*ln(l/r) + 1/4* μi,

где:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

L = D2*n2/45D + 100*l,

где:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.

Однослойная катушка виток к витку

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

где:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.

Многослойная намотка

Факторы, влияющие на индуктивность катушки

Коэффициент самоиндукции зависит от следующих параметров:

  • геометрических особенностей каркаса;
  • формы оправки;
  • числа витков;
  • марки и диаметра провода;
  • свойств магнитопровода.

Интересно. Материал сердечников из распыленного железа выделяют разным цветом в зависимости от марки смеси. Сердечники такого рода используют для дросселей в импульсных устройствах.

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Эквивалентная схема дросселя

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Видео

Калькулятор расчета многослойной катушки индуктивности

На практике нередко случаются ситуации, когда при выходе со строя катушки индуктивности, ее необходимо восстановить – намотать новую проволоку взамен старой. При этом вам уже известны геометрические параметры катушки, но требуется узнать, сколько сделать витков, слоев, их толщину и длину необходимого для этого провода. Стоит отметить, что при намотке витки должны ложиться вплотную без зазора.

Для расчета индуктивности многослойной катушки используется такая формула:

Формула индуктивности многослойной катушки

  • d – сумма диаметра каркаса и толщины намотки только с одной стороны;
  • n – количество витков;
  • g – толщина намотанной проволоки;
  • h – высота намотанной проволоки;

Катушка индуктивности

Из этой формулы, зная величину индуктивности, можно вывести толщину намотки:

Формула определения толщины намотанной проволоки

Для определения количества витков необходимо воспользоваться формулой:

Длину одного витка можно определить следующим образом:

Где π – это константа, а dвит_— это диаметр витка.

Читайте также:
Пластиковые окна на дачу: как правильно выбрать и установить

Тогда, зная общее число витков и принимая, что d – это усредненное значение диаметра для всех витков, длина всего провода будет определяться по формуле:

Через сопротивление провода можно определить его диаметр, для чего понадобится выразить сопротивление через геометрические параметры устройства.

где ρ – удельное сопротивление металла, из которого изготовлен проводник, а S – площадь проводника, которая определяется по формуле:

Подставив значение площади и длины провода, получим такое выражение для определения сопротивления:

Из значения сопротивления можно вывести формулу для определения диаметра провода, подставив предварительно формулу для вычисления количества витков:

Формула для определения диаметра провода

После получения величины диаметра провода, можно определить количество витков, которое подставляется с остальными данными в первую формулу для расчета индуктивности.

Число слоев можно определить, разделив толщину намотки на диаметр провода:

Посредством вышеприведенных вычислений можно определить все параметры многослойной катушки индуктивности, которые помогут вам изготовить устройство с нужными параметрами. Также, чтобы облегчить вычисления вы можете воспользоваться нашим онлайн калькулятором ниже.

Поделиться в социальных сетях

Комментарии и отзывы (12)

Анатолий

Отличный калькулятор, удобный и точный. А все претензии — от начинающих любителей, ни разу не мотавших катушки индуктивности вручную. Иначе имели бы представление и о длине намотки, и о длине провода для намотки.

Вадим

Почему во всех каликуляторах расчёта индуктивности нет учитывания магнитной проницаемости разных видов сердечников и без него. Наматывается количество витков не понятно относительно чего, воздуха феррита или железа.

Анатолий

Витки наматываются на каркас. А сердечник можно устанавливать внутрь каркаса, и тогда индуктивность возрастет пропорциональной относительной магнитной проницаемости сердечника, которая много меньше проницаемости материала сердечника.

Роман

Длина намотки (имеется ввиду) — длина каркаса катушки

Читаю коментарии людей ? волосы дыбом встают. (Которых у меня нет).
Если человек не может понять, что такое «длина намотки», то ему лучше вообще не связываться с электроникой. Да и вообще с техникой.
Калькулятор отличный ! ?
У меня всё нормально совпадает.

Валерий

использовал этот калькулятор для расчёта 0,5 мГн проводом 1 мм на каркасе диаметром 23 мм длиной 30 мм намотка внавал … калькулятор выдал 178 витков,намотал 180, реальная измеренная индуктивность 550 мкГн

Valentin

«длина намотки» — нужно воспринимать как «длина каркаса для намотки катушки», и все считают, что все это знают когда читают подобные статьи, отнюдь. Еще больше удивляет, что вводя параметры например провод 0,5, длина 10мм, индуктивность 150 мгц мы получаем ну просто не реальные расчеты. Попробуйте расчитать и намотать, потом измерить- вы удивитесь.

У меня всё получилось отлично!
Нужна была катушка 0.1 мГн. Для среза от 5000 Герц.
Нашёл старый сигнал от Волги. Там есть катушка. Измерил параметры, снял два слоя и получилось:
Диаметр каркаса 15мм
Длина намотки 13мм
Провод 0.6 мм
Длина 4.90 метров
Сопротивление 0.3 Ома
Как раз 0.1 мГн.
Подключил динамик, проверил, так и есть — срез примерно с 5000 Герц.
?

Сергей

Индуктивность измеряется герцах? Джозеф Генри в гробу перевернулся…

Valentin

Андрею от читателя! — да, правильно считаешь))) статья какпец какая длинная «формула за формулой и не понятен конец расчетов) потом бац и калькулятор — думаешь «ага. щаззз…раз статья такая то и калькулятор с подвохом» — верно. Попробуй указать длину намотки учитывая, что ты ее еще не знаешь, так как не понятно какую катушку. Но этого мало….указал длину? думаешь всёёёё? ))) хи……смотри расчет который получился….сколько там была ваша длина намотки? а расчет показывает не только длину но и другие параметры которые вам типо надо подправить)))) я валяюсь……
Нашелся бы умный человек который бы создал калькулятор (а ведь это не сложно переложить в электронную версию), который бы выдавал информацию ИСКЛЮЧИТЕЛЬНО при вводе требуемой величины «индуктивности» и сам бы выдавал Три варианта получения подобной индуктивности исходя из материала каркаса и диаметра проводов чаще всего имеющихся в продаже. Вот это было бы реально и полезно и удобно, а так по формулам и более простым (и точным) можно и самому посчитать, что все и делают.

Читайте также:
Ресанта САИ-160 – отзывы, характеристики, описание сварочного инвертора

Андрей

В онлайн калькуляторе требуется указать «длинну намотки» но нигде не говориться с чего снимать этот размер. Это «молодость» разработчиков сайта?

Роман

Длина каркаса катушки! Прежде чем намотать катушку вам надо определиться на какой каркас вы будете ее мотать. У каркаса вашей будущей катушки индуктивности есть диаметр внутренний а также длина этого внутреннего каркаса на который вы и будете наматывать свои витки. Все здесь понятно, а если не понятно даже не беритесь за это неблагодарное дело!

Конвертер величин

Scheme

Однослойная катушка индуктивности: D — диаметр оправки или каркаса катушки, Dc — диаметр катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией.

Калькулятор определяет индуктивность однослойной катушки.

Пример: рассчитать индуктивность однослойной катушки без сердечника, состоящей из 10 витков на цилиндрическом каркасе диаметром 2 см; длина катушки 1 см.

Введите диаметр каркаса катушки, число витков и длину катушки, выберите единицы и нажмите кнопку Рассчитать.

Расчет количества витков и длины намотки по заданной индуктивности, диаметру оправки или каркаса и диаметру провода

Пример: рассчитать число витков и длину намотки катушки 10 мкГн, намотанной эмалированным проводом 0,65 мм (диаметр с изоляцией 0,7 мм) на оправке 2 см.

На рисунке выше показана однослойная катушка индуктивности: Dc — диаметр катушки, D — диаметр оправки или каркаса катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией

Для расчета индуктивности LS применяется приведенная ниже формула из статьи Р. Уивера (R. Weaver) Численные методы расчета индуктивности:

D — диаметр оправки или каркаса катушки в см,

l — длина катушки в см,

N — число витков и

L — индуктивность в мкГн.

Эта формула справедлива только для соленоида, намотанного плоским проводом. Это означает, что катушка намотана очень тонкой лентой без зазора между соседними витками. Она является хорошим приближением для катушек с большим количеством витков, намотанных проводом круглого сечения с минимальным зазором между витками. Американский физик Эдвард Беннетт Роса (Edward Bennett Rosa, 1873–1921) работавший в Национального бюро стандартов США (NBS, сейчас называется Национальное бюро стандартов и технологий (NIST) разработал так называемые корректирующие коэффициенты для приведенной выше формулы в форме (см. формула 10.1 в статье Дэвида Найта, David W. Knight):

Здесь LS — индуктивность плоской спирали, описанная выше, и

где ks — безразмерный корректирующий коэффициент, учитывающий разницу между самоиндукцией витка из круглого провода и витка из плоской ленты; km — безразмерный корректирующий коэффициент, учитывающий разницу в полной взаимоиндукции витков из круглого провода по сравнению с витками из плоской ленты; Dc — диаметр катушки в см, измеренный между центрами проводов и N — число витков.

Величина коэффициента Роса km определяется по формуле 10.18 в упомянутой выше статье Дэвида Найта:

Коэффициент Роса ks, учитывающий различие в самоиндукции, определяется по формуле 10.4 в статье Д. Найта:

Здесь p — шаг намотки (расстояние между витками, измеренное по центрам проводов) и d — диаметр провода. Отметим, что отношение p/d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d.

Читайте также:
Септик – на даче и дома

Факторы, влияющие на индуктивность катушки

На индуктивность катушки влияют несколько факторов.

    Количество витков. Катушка с большим количеством витков имеет бóльшую индуктивность по сравнению с катушкой с меньшим количеством витков.

Picture

Picture

Picture

Picture

Picture

Упрощенная эквивалентная схема реальной катушки индуктивности: Rw — сопротивление обмотки и ее выводов; L — индуктивность идеальной катушки; Rl — сопротивление вследствие потерь в сердечнике; и Cw — паразитная емкость катушки и ее выводов.

Эквивалентная схема реальной катушки индуктивности

В этом калькуляторе мы рассматривали идеальную катушку индуктивности. В то же время, в реальной жизни таких катушке не бывает. Катушки обычно конструируются с минимальными размерами таким образом, чтобы они помещались в миниатюрное устройство. Любую реальную катушку индуктивности можно представить в виде идеальной индуктивности, к которой параллельно подключены емкость и сопротивление, а еще одно сопротивление подключено последовательно. Параллельное сопротивление учитывает потери на гистерезис и вихревые токи в магнитном сердечнике. Это параллельное сопротивление зависит от материала сердечника, рабочей частоты и магнитного потока в сердечнике.

Паразитная емкость появляется в связи с тем, что витки катушки находятся близко друг к другу. Любые два витка провода можно рассмотреть как две обкладки маленького конденсатора. Витки разделяются изолятором, таким как воздух, изоляционный лак, лента или иной изоляционный материал. Относительная диэлектрическая проницаемость материалов, используемых для изоляции, увеличивает емкость обмотки. Чем выше эта проницаемость, тем выше емкость. В некоторых случаях дополнительная емкость может появиться также между катушкой и противовесом, если катушка расположена над ним. На высоких частотах реактивное сопротивление паразитной емкости может быть весьма высоким и игнорировать его нельзя. Для уменьшения паразитной емкости используются различные методы намотки катушек.

Для уменьшения паразитной емкости катушки с высокой добротностью для радиопередатчиков наматывают так, чтобы было достаточно большое расстояние между витками

Для уменьшения паразитной емкости катушки с высокой добротностью для радиопередатчиков наматывают так, чтобы было достаточно большое расстояние между витками

Если индуктивность большая, то сопротивление обмотки (Rw на схеме) игнорировать уже нельзя. Тем не менее, оно мало по сравнению с реактивным сопротивлением больших катушке на высоких частотах. Однако, на низких частотах и на постоянном токе это сопротивление необходимо учитывать, так как в этих условиях через катушку могут протекать значительные токи.

Как определить индуктивность катушки формула

Человеческий мозг предположил следующее: поле должно протекать вокруг проводников не по воздуху, а по железу, сопротивляемость которого магнитному полю намного меньше. Такие катушки являются индуктивными.

Коэффициент самоиндукции — это есть индуктивность. Иными словами: величина, которая характеризует связь между находящимся в проводнике электрическим током и магнитным полем, создаваемым при протекании. Эта мера представляет сумму потока индукции. Прямая зависимость её от конфигурации проводника и от проницаемости доказана.

При подаче на катушку электрического тока постоянного напряжения, в катушке возникает напряжение, противоположное напряжению электрического тока (Е =U), которое исчезает через некоторое время. Это противоположное напряжение называется ЭДС (электродвижущей силой самоиндукции). Параметр зависит от индуктивности катушки.

Как Определить Количество Витков в Катушке Формула Миллиомметр на ацп mcp3421

Расчет числа витков многослойной катушки без сердечника | Когда датчик обнаруживает отраженное инфракрасное излучение, то включается сигнал тревоги который будет звучать в течение 2 минут. Спрашивайте, я на связи!

Как рассчитать сердечник и витки самодельных катушек индуктивности

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

Расчет индуктивности по заданным: количеству витков, диаметру каркаса и длине намотки

Калькулятор определяет индуктивность однослойной катушки.

Пример: рассчитать индуктивность однослойной катушки без сердечника, состоящей из 10 витков на цилиндрическом каркасе диаметром 2 см; длина катушки 1 см.

Введите диаметр каркаса катушки, число витков и длину катушки, выберите единицы и нажмите кнопку Рассчитать.

Читайте также:
Проекты каркасных домов 6x6: особенности проектирования, чертежи, фото

Расчет количества витков и длины намотки по заданной индуктивности, диаметру оправки или каркаса и диаметру провода

Пример: рассчитать число витков и длину намотки катушки 10 мкГн, намотанной эмалированным проводом 0,65 мм (диаметр с изоляцией 0,7 мм) на оправке 2 см.

На рисунке выше показана однослойная катушка индуктивности: Dc — диаметр катушки, D — диаметр оправки или каркаса катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией

Для расчета индуктивности LS применяется приведенная ниже формула из статьи Р. Уивера (R. Weaver) Численные методы расчета индуктивности:

Здесь LS — индуктивность плоской спирали, описанная выше, и

Величина коэффициента Роса km определяется по формуле 10.18 в упомянутой выше статье Дэвида Найта:

Коэффициент Роса ks, учитывающий различие в самоиндукции, определяется по формуле 10.4 в статье Д. Найта:

Здесь p — шаг намотки (расстояние между витками, измеренное по центрам проводов) и d — диаметр провода. Отметим, что отношение p/d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d.

Как Определить Количество Витков в Катушке Формула Миллиомметр на ацп mcp3421

Какие параметры есть у катушки?

Катушка обладает несколькими физическими характеристиками, отражающими её качество и пригодность для той или иной работы. Одной из них является индуктивность. Она численно равна отношению потока магнитного поля, создаваемого катушкой, к величине этого тока. Индуктивность измеряется в Генри (Гн) и в большинстве случаев принимает значения от единиц микрогенри до десятков Генри.

Индуктивность является, пожалуй, самым важным параметром катушки. Поэтому неудивительно, что большинство людей даже не думают о том, что существуют другие величины, способные описывать поведение катушки и отражать её пригодность для того или иного применения.

При выборе катушки индуктивности профессионалы также обращают внимание на сопротивление потерь. Как можно понять из этого словосочетания, оно отражает величину потерь электроэнергии, происходящих вследствие паразитных эффектов, таких как, например, нагревание проводов, происходящее по закону Джоуля-Ленца. Нетрудно понять, что чем ниже это значение для катушки, тем она лучше.

Ещё один параметр, который необходимо учитывать, — добротность контура. Она тесно связана с предыдущим параметром и представляет собой отношение реактивного сопротивления к активному (сопротивлению потерь). Соответственно, чем выше добротность — тем лучше. Её повышение достигается за счёт выбора оптимального диаметра провода, материала и диаметра сердечника, числа обмоток.

Сейчас рассмотрим подробнее самый важный и наиболее волнующий нас параметр — индуктивность катушки.

Как Определить Количество Витков в Катушке Формула Миллиомметр на ацп mcp3421

Расчет индуктивности катушек: формула. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату. Спрашивайте, я на связи!

Расчет катушки индуктивности: онлайн калькулятор

Пятиполосный эквалайзер на КА22234

На рисунке показана схема двухканального пятиполосного эквалайзера на микросхеме КА22234 (аналог BA3822L). Частоты регулирования: 100, 300, 1000, 3000, 10000 Гц. Основные характеристики эквалайзера: Минимальное напряжение питания 3,5 В. Максимальное напряжение питания 14В Ток покоя 7 мА Частотный диапазон от 20 Гц до 20 кГц Входное сопротивление 16К КНИ не более 0,1% Максимальное …Подробнее.

Этот датчик движения может обнаружить движущегося человека на расстоянии в 1 метр. В качестве датчика используется ИК-модуль HOA1405. Когда датчик обнаруживает отраженное инфракрасное излучение, то включается сигнал тревоги который будет звучать в течение 2 минут. Схема может быть изменена для различных приложений. При заданных значений R4 и C2, время звучания …Подробнее.

Как Определить Количество Витков в Катушке Формула Миллиомметр на ацп mcp3421

Как определить индуктивность катушки формула — Яхт клуб Ост-Вест Отметим, что отношение p d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d. Спрашивайте, я на связи!

Читайте также:
Пороги межкомнатных дверей: монтаж

Катушка индуктивности. Описание, характеристики, формула расчета

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Последовательное соединение индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Читайте также:
Натяжной потолок с орхидеей: оригинальный декор в интерьере

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

где R является собственным сопротивлением обмотки.

Катушка индуктивности. Формула индуктивности

Базовая формула индуктивности катушки:

  • L = индуктивность в генри
  • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
  • μ г = относительная проницаемость материала сердечника
  • N = число витков
  • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
  • l = длина катушки в метрах (м)

Индуктивность прямого проводника:

  • L = индуктивность в нГн
  • l = длина проводника
  • d = диаметр проводника в тех же единицах, что и l

Индуктивность катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = внешний радиус катушки
  • l = длина катушки
  • N = число витков

Индуктивность многослойной катушки с воздушным сердечником:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • l = длина катушки
  • N = число витков
  • d = глубина катушки

Индуктивность плоской катушки:

  • L = индуктивность в мкГн
  • r = средний радиус катушки
  • N = число витков
  • d = глубина катушки

Конструкция катушки индуктивности

Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Расчёт индуктивности. Часть 2

Всем доброго времени суток. Сегодняшняя статья является продолжением предыдущей. Здесь продолжим рассматривать расчёт индуктивностей индуктивных элементов без сердечников. В прошлой статье я рассказал, как рассчитать индуктивность прямого провода и провода свёрнутого в кольцо (виток), в данной статье будем рассчитывать индуктивность круговых катушек, то есть поперечный профиль, которых представляет собой окружности.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Виды катушек индуктивности

Круговые катушки индуктивности являются, наверное, самыми распространёнными. В тоже время из-за разнообразия их форм существует некоторая трудность в расчёте индуктивности. Для некоторого упрощения расчёта катушки индуктивности делятся на несколько видов. Рассмотрим основные конструктивные особенности круговых катушек индуктивности

Читайте также:
Проводка по воздуху к бытовке от дома. Разводка электропроводки своими руками: от схемы до монтажа

Расчёт индуктивности катушки

Расчёт индуктивности катушки.

Для расчёта индуктивности круговой катушки необходимо знать следующие размеры:

D1 – внутренний диаметр, D2 – внешний диаметр, Dср – средний диаметр, l – длина катушки (аксиальный размер), t – толщина обмотки (радиальный размер), где t можно вычислить

Поэтому, в зависимости от соотношения между этими размерами различают следующие катушки индуктивности:

если l > Dср – длинная катушка,

если l < Dср – короткая катушка,

если l ср – очень короткая катушка,

если l = 0 – плоская катушка,

если t ≈ Dср – толстая катушка,

если t ср – тонкая катушка,

если t = 0 – соленоид.

Особенности расчёта катушек индуктивности

Кроме конструктивных параметров, на индуктивность влияет также параметры обмоточного провода (диаметр, толщина изоляции, шаг намотки), хотя в большинстве случаев влияние их незначительно, но в некоторых случаях, например, при большом шаге намотки их следует учитывать. Поэтому общая индуктивность катушки можно представить следующим выражением

где LР – расчётная индуктивность;

∆L – поправка на «изоляцию», ∆L = ∆1L + ∆2L;

1L – поправка учитывающая влияние индуктивности витков;

2L – поправка учитывающая влияние взаимной индуктивности витков.

В большинстве случаев, например, при плотной намотке «виток к витку» поправка ∆L составляет несколько процентов от расчётной индуктивности LР, поэтому если нет необходимости в точном значении общей индуктивности L, поправку на изоляцию ∆L можно не учитывать.

Особенности расчёта круговых катушек индуктивности состоят в следующем:

1. При определении расчётной индуктивности LP, средний диаметр принимается равным среднему диаметру реальной катушки;

2. Длина намотки l и толщина намотки t принимается равными шагу обмотки (p – шаг по длине катушки, q – шаг по толщине намотки) умноженному на количество слоёв ω в том или ином направлении

3. Если у катушки в каком-либо направлении (по длине намотки l или по толщине намотки t) имеется только один ряд (или слой), то в этом направлении размер l или t можно принять равным нулю, то есть расчёт ведётся как для соленоида или плоской катушки.

4. В некоторых случаях, при большом диаметре провода или шаге намотки у однослойных катушках размер l или t принимается равным диаметру голого провода d.

5. Так как величина поправки на взаимную индуктивность ∆2L в несколько раз меньше, чем поправка на индуктивность витков ∆1L, то при расчётах можно учитывать только ∆1L.

Приступим к расчётным выражениям, в начале рассчитаем простейшие круговые катушки – соленоид и плоскую катушку.

Расчёт индуктивности соленоида

Определение индуктивности соленоида

Определение индуктивности соленоида, d – диаметр соленоида, l – длина соленоида.

Соленоид представляет собой катушку, намотанную на каркас в один слой, поэтому толщину слоя можно принять равной нулю t = 0, а расчётная формула индуктивности будет иметь вид

где μ – магнитная постоянная, μ = 4π•10 -7 Гн/м;

ω – число витков соленоида;

d – диаметр соленоида, м;

Φ – коэффициент, который зависит от отношения α = l/D;

l – длина соленоида, м;

Поправочный коэффициент Φ зависит от отношения длины соленоида l к его диаметру d

Для длинного соленоида, то есть α > 0,75, поправочный коэффициент составит

Пример. Необходимо рассчитать соленоид диаметром d = 1 см и длиной l = 5 см, который имеет ω = 75 витков.

Стоит отметить, что формула расчёта соленоида подходит для большинства однослойных катушек с точностью в несколько процентов.

Индуктивность плоской катушки

Определение индуктивности плоской катушки

Определение индуктивности плоской катушки, D1 – внутренний диаметр, D2 – внешний диаметр, D – средний диаметр, t – толщина намотки.

В данном случае в качестве плоской катушки представлена идеализированная катушка, длина намотки которой приняли равной нулю l = 0, тогда индуктивность такой катушки можно вычислить по следующей формуле

Читайте также:
Особенности производства металлических дверей

где μ – магнитная постоянная, μ = 4π•10 -7 Гн/м;

ω – число витков соленоида;

D – средний диаметр катушки, м;

Ψ – коэффициент, который зависит от отношения ρ = t/D­;

t – толщина намотки катушки.

Коэффициент Ψ зависит от соотношения толщины намотки t и среднего диаметра катушки D

При небольшой толщине намотки, когда ρ < 0,5

При большой толщине намотки, когда ρ > 0,5

где γ – коэффициент учитывающий соотношение внешнего и внутреннего диаметров обмотки катушки

Пример. Рассчитаем плоскую катушку со средним диаметром D = 5 см и толщиной намотки t = 1 см, состоящую из ω = 20 витков.

Выражения для индуктивности тонкой катушки позволяют рассчитать индуктивность и большинства катушек с малой длиной и большой толщиной обмоток.

Индуктивность круговой катушки прямоугольного сечения

Теперь перейдём от идеализированных катушек к реальным, которые в своем сечении представляют собой прямоугольник

Расчёт индуктивности катушки

Индуктивность прямоугольной катушки.

Катушку прямоугольного сечения можно представить в виде соленоида с ненулевой толщиной обмотки t ≠ 0, либо в виде плоской катушки с ненулевой длиной l ≠ 0, поэтому рассчитать необходимую катушку можно либо как соленоид, либо как плоскую катушку, а затем внести поправку.

Таким образом, индуктивность прямоугольной катушки можно вычислить по следующей формуле

где L – индуктивность идеальной катушки (соленоида или плоской катушки) в зависимости от α = l/Dcp;

l – длина катушки, м;

Dcp – средний диаметр катушки, м;

∆ — поправка на форму катушки.

В принципе реальную катушку индуктивности, в зависимости от отношения длины намотки l к среднему диаметру Dcp, можно разделить на несколько типов:

1. Длинная катушка, у которой α > 0,75.

2. Короткая катушка, имеющая α < 0,75 и γ < 1.

3. Очень короткая катушка, имеет α 1.

Рассмотрим каждый случай по отдельности.

Индуктивность длинной катушки

Длинная катушка

Для длинной катушки (α > 0,75) величина L рассчитывается также как для длинного соленоида, где l – длина соленоида, Dcp – средний диаметр соленоида, а значение поправки ∆ вычисляется по следующему выражению

где α – коэффициент, учитывающий отношение длины катушки l к её среднему диаметру DCP;

γ – коэффициент, учитывающий отношение толщины намотки t к длине намотки l;

ρ – коэффициент, учитывающий отношение толщины намотки t к её среднему диаметру DCP.

где D1 – внутренний диаметр, D2 – внешний диаметр.

Пример. Рассчитаем индуктивность катушки длиной l = 10 см, средним диаметром DCP = 2 см, количеством витков ω = 100 и толщиной намотки t = 5 мм.

Индуктивность короткой катушки

Короткая катушка

Для короткой катушки (α < 0,75, t < l) величина L рассчитывается также как для короткого соленоида, где l – длина соленоида, DСР – средний диаметр соленоида, а значение поправки ∆ вычисляется по следующему выражению

где α – коэффициент, учитывающий отношение длины катушки l к её среднему диаметру DCP;

γ – коэффициент, учитывающий отношение толщины намотки t к длине намотки l;

Пример. Рассчитаем индуктивность катушки длиной l = 1 см, средним диаметром DСР = 2 см, толщиной намотки t = 5 мм, количеством витков ω = 50.

Индуктивность очень короткой катушки

Очень короткая катушка

Очень короткая катушка.

Для очень короткой катушки (α l) величина L рассчитывается также как для плоской катушки, где t – толщина намотки, Dcp – средний диаметр катушки, а значение поправки ∆ вычисляется по следующему выражению

где α – коэффициент, учитывающий отношение длины катушки l к её среднему диаметру DCP;

γ – коэффициент, учитывающий отношение толщины намотки t к длине намотки l, γ < 1;

ρ – коэффициент, учитывающий отношение толщины намотки t к её среднему диаметру DCP.

Пример. Рассчитаем индуктивность катушки длиной l = 5 мм, средним диаметром DCP = 7 см, намотка толщиной t = 1 см, количество витков ω = 150.

Читайте также:
Размеры письменного стола: как выбрать подходящую модель?

Расчёт поправки на собственную индуктивность витков

Как я писал в начале статьи, полная индуктивность катушки L состоит из расчётной индуктивности LP и поправки на изоляцию ∆L, которая в свои очередь состоит из поправки на собственную индуктивность витков ∆1L и поправки на взаимную индуктивность витков ∆2L

Данные поправки зависят от взаимного расположения витков в катушке. Для провода круглого сечения возможны следующие варианты заполнения катушки

Расположение провода круглого сечения в катушке индуктивности. s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции), p – шаг намотки по длине катушки, q – шаг намотки по толщине катушки.

В общем случае поправка на собственную индуктивность витков рассчитывается по следующему выражению

где μ – магнитная постоянная, μ = 4π•10 -7 Гн/м;

ω – число витков соленоида;

DСР – средний диаметр катушки, м;

I – коэффициент, зависящий от расположения витков катушки.

Коэффициент I определяется в зависимости от расположения провода, варианты которого изображены на рисунке выше.

Для варианта а), провод намотан с небольшим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта б), провод намотан с большим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта в), провод намотан с шагом p по длине катушки и с шагом q по толщине катушки

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта г), провод намотан в один слой по длине катушки с шагом p. В зависимости от способа вычисления расчётной индуктивности LP

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной нулю (расcчитывалась как соленоид), то коэффициент I будет равен

где p – шаг намотки по длине катушки, sp – диаметр голого провода (без изоляции).

Для варианта д), провод намотан в один слой по толщине намотки с шагом q, также возможно два случая

— если при вычислении расчётной индуктивности LP длина намотки l принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP длина намотки l принята равной нулю (рассчитывалась как плоская катушка), то коэффициент I будет равен

где q – шаг намотки по толщине катушки, sp – диаметр голого провода (без изоляции).

Расчёт поправки на взаимную индуктивность витков

В общем случае поправка на взаимную индуктивность витков ∆2L катушки определяется выражением

где μ – магнитная постоянная, μ = 4π•10 -7 Гн/м;

ω – число витков соленоида;

DСР – средний диаметр катушки, м;

J – коэффициент, зависящий формы катушки и от числа витков катушки.

1. Для катушки выполненной в один слой по длине катушки (соленоид):

а) при определении расчётной индуктивности LP толщина намотки t принята равной шагу намотки р, то коэффициент J составит

где ω – количество витков катушки.

б) при определении расчётной индуктивности LP толщина намотки t принята равной нулю (рассчитывается как соленоид), то коэффициент J составит

где ω – количество витков катушки.

2. Для катушки, выполненной в один слой по толщине намотки (плоская катушка):

а) при определении расчётной индуктивности LP длина катушки l принята равной шагу намотки р, то коэффициент J составит

где ω – количество витков катушки.

б) при определении расчётной индуктивности LP длина катушки l принята равной нулю (рассчитывается как плоская катушка), то коэффициент J составит

где ω – количество витков катушки.

На сегодня всё. В следующей статье я закончу с индуктивными элементами без сердечников.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Ссылка на основную публикацию