Особенности, типы и виды обмоток трансформатора тока

Обмотки силовых трансформаторов. Основные типы обмоток

Обмоткой трансформатора называют совокупность витков, образующих электрическую цепь, в которой складываются эдс, индуктированные в отдельных витках. Обмотки трансформатора состоят из обмоточного провода и изоляционных деталей, предусмотренных конструкцией, которые не только защищают витки от электрического пробоя и препятствуют их смещению под действием электромагнитных сил, но и создают необходимые каналы для охлаждения. Обмотки трансформаторов различных мощностей и напряжений различаются типом намотки, количеством витков, направлением намотки, числом параллельных проводов в витке, схемой соединения отдельных элементов обмотки между собой.

По взаимному расположению на стержне обмотки разделяются на концентрические и чередующиеся. Концентрические обмотки — это обмотки, изготовленные в виде цилиндров и концентрически расположенные на стержне магнитопровода. Чередующиеся обмотки — это обмотки ВН и НН трансформатора, чередующиеся в осевом направлении на стержне. На рисунке 1 показаны концентрическое и чередующееся расположения обмоток на стержне магнитопровода.

а — концентрическое, б — чередующееся; 1 – стержень магнитопровода, 2 — обмотка НН, 3 — обмотка ВН
Рисунок 1 – Расположение обмоток на стержне магнитопровода

Основным элементом обмоток трансформатора является виток, в котором наводится эдс и который в зависимости от величины тока нагрузки может быть выполнен одним или несколькими параллельными проводами. Ряд витков, намотанных на цилиндрической поверхности, называется слоем. Число витков в одном слое может колебаться от одного до нескольких десятков.

Одно- или многослойная цилиндрическая обмотка получается при намотке одного (или нескольких) слоев из обмоточного провода прямоугольного или круглого сечения. Наиболее простой является однослойная обмотка из прямоугольного провода (рисунок 2, а). Слой обмотки составляют витки, наматываемые по винтовой линии на бумажно-бакелитовый цилиндр. Каждый виток в слое укладывается вплотную к предыдущему в осевом направлении обмотки. Витки цилиндрической обмотки состоят из одного или нескольких параллельных проводов, располагаемых рядом и имеющих одинаковое положение по отношению к полю рассеяния трансформатора. Обычно обмотку из прямоугольного провода наматывают плашмя, но при необходимости возможна намотка и на ребро.

цилиндрические обмотки трансформаторов

а — однослойная, б — двухслойная, в — многослойная из круглого провода; 1 — витки из прямоугольного провода, 2 — разрезные выравнивающие кольца, 3 — бумажно-бакелитовый цилиндр, 4 — выводной конец первого слоя обмотки, 5 — вертикальные рейки, 6 — внутренние ответвления обмотки
Рисунок 2 – Цилиндрические обмотки

Для выравнивания винтовой поверхности крайних витков к ним прикрепляют разрезные бумажно-бакелитовые кольца (в виде «клина»), которые придают обмотке форму цилиндра. Эти кольца предохраняют витки от механических повреждений и создают опорную поверхность обмотки.

Между слоями двухслойной цилиндрической обмотки (рисунок 2, б) прокладывают изоляцию из бумаги или электрокартона или равномерно по окружности устанавливают несколько реек, образующих вертикальный охлаждающий канал. Соединение между слоями обычно осуществляют переходом без пайки.

Одно- и двухслойные цилиндрические обмотки из прямоугольного провода обычно применяют в качестве обмоток НН на напряжение до 690 В в трансформаторах мощностью до 630 кВА.

Многослойная цилиндрическая обмотка (рисунок 2, в) наматывается, как правило, из провода круглого сечения. Намотка осуществляется плотной укладкой витков одного к другому с переходами из слоя в слой. Намотку первого слоя обычно производят на бумажно-бакелитовом цилиндре. Между последующими слоями размещают несколько слоев кабельной бумаги. Для увеличения поверхности охлаждения между некоторыми слоями обмотки создается осевой канал, образованный рейками из электрокартона или бука. Такие многослойные обмотки применяют в качестве обмоток ВН для масляных трансформаторов мощностью до 400 кВА при напряжении до 35 кВ.

Винтовая обмотка (ее иногда называют спиральной) состоит из ряда витков, наматываемых по винтовой линии, с каналами между ними. Каждый виток состоит из одного (очень редко) или нескольких одинаковых прямоугольных проводов, располагаемых плашмя вплотную друг к другу в радиальном направлении. Общее число параллельных проводов в винтовых обмотках может достигать 100 и более (в мощных трансформаторах). В зависимости от тока и соответственно числа параллельных проводов винтовая обмотка может выполняться одноходовой, как показано на рисунке 3, а, или многоходовой, т. е. вся обмотка может состоять из двух и более отдельных винтовых обмоток, вмотанных одна в другую в процессе изготовления (рисунок 3, б). Каждый такой «ход» может состоять из 4—40 параллельных проводов.

винтовая обмотка трансформатора

а) б)

а – из одного провода в витке, б – из нескольких параллельных проводов в витке
Рисунок 3 – Винтовая обмотка

Винтовые обмотки наматываются на бумажно-бакелитовые цилиндры или специальные оправки. После намотки обмотку снимают с оправки и отправляют на дальнейшую технологическую обработку. Однако в любом случае вертикальный канал вдоль внутренней поверхности винтовой обмотки и каналы между ее витками образуются рейками и прокладками из электрокартона.

Параллельные провода винтовой обмотки расположены концентрически и находятся на разном расстоянии от ее оси. Поэтому, если не принять специальных мер, провода, расположенные ближе к оси, будут короче, а более удаленные от нее — длиннее. Кроме того, положение в магнитном поле рассеяния этих проводов будет различным, т. е. все они будут иметь неодинаковые активные и реактивные сопротивления и, следовательно, распределение тока между ними окажется различным.

Читайте также:
Сифон для ванной: как собрать сифон для ванны

Для равномерного распределения тока между параллельными проводами и уменьшения добавочных потерь винтовые обмотки делают с транспозициями (перекладками проводов в процессе намотки). При перекладках стремятся, чтобы транспозиция была совершенной, т. е. чтобы каждый провод попеременно занимал все положения, возможные в пределах одного витка.

В винтовых обмотках применяют различные виды транспозиций. В одноходовой обмотке с числом проводов до 12 обычно применяют комбинацию из двух видов транспозиции (рисунок 4): групповую, когда параллельные провода делятся на две группы и обе эти группы меняются местами, и общую, когда изменяется взаимное расположение всех параллельных проводов. На рисунке 5 схематически показан этот способ перекладки проводов. Каждый виток имеет четыре параллельных провода (1—4), которые на расстоянии 1/4 и 3/4 высоты обмотки разделяются на равные группы, меняющиеся местами (рисунок 4, а); эти транспозиции называют групповыми. В середине обмотки производят общую перекладку, когда все провода меняются местами.

Транспозиции проводов в витковых обмотках

а – групповая, б – общая (показана часть транспозиции)
Рисунок 4 – Транспозиции проводов в витковых обмотках

Схема транспозиции в винтовой обмотке

1-4 – провода
Рисунок 5 – Схема транспозиции в винтовой обмотке из четырех параллельных проводов

При числе параллельных проводов более 12 в одноходовой обмотке эффективна и широко применяется транспозиция Бюда; в двухходовой винтовой обмотке часто выполняют равномерно распределенную транспозицию, когда число перестановок в обмотке обычно равно числу параллельных проводов.

Винтовая обмотка имеет значительную торцевую поверхность, позволяющую обеспечить ее устойчивость к осевым усилиям при коротких замыканиях; она обладает хорошей механической прочностью и развитой поверхностью охлаждения. Поэтому ее широко применяют для обмоток НН, имеющих относительно небольшое число витков, при больших токах в трансформаторах мощностью 1000 кВА и выше.

В последнее время все более широкое распространение получают винтовые обмотки из транспонированного провода, где элементарные проводники с лаковой изоляцией меняются местами в процессе изготовления самого провода. Такие обмотки технологичны, имеют низкие добавочные потери и высокую механическую прочность.

Непрерывные обмотки (рисунок 6) особенно широко применяют для трансформаторов. Они состоят из отдельных катушек (секций), намотанных из прямоугольного провода, причем в каждой катушке может быть несколько витков. На рисунке 7 показана часть такой катушки с двумя витками: витки здесь выполнены двумя параллельными проводами. Обмотку такого типа называют непрерывной потому, что ее наматывают без разрывов, т. е. переход из одной катушки в другую производится непрерывно, без паек. Для этого перекладывают витки каждой второй катушки так, чтобы один переход (из катушки в катушку) был снаружи обмотки, а второй — внутри (рисунок 8).

Рисунок 6 – Непрерывная обмотка

Рисунок 7 – Часть катушки непрерывной обмотки с двумя параллельными проводами в витке

1 — наружный, 2 — внутренний
Рисунок 8 – Переходы в катушках непрерывной обмотки

В непрерывной обмотке может быть до четырех и даже шести параллельных проводов в витке. В ней тоже производят транспозицию проводов, однако выполняют ее в каждой катушке при переходе проводов из одной катушки в другую. В непрерывных обмотках особенно удобно выполнять ответвления для регулирования напряжения. Их делают обычно от наружных (реже — внутренних) переходов так, чтобы между двумя соседними ответвлениями размещались витки, соответствующие ступени регулирования. Непрерывные обмотки отличаются высокой механической прочностью и надежностью, поэтому их широко применяют как для обмоток НН, так и для обмоток ВН у трансформаторов различных мощностей и напряжений.

Обмотки трансформатора изолируют от заземленных частей (магнитопровода, бака) и от других обмоток. Эту изоляцию обмоток называют главной. Кроме главной имеется продольная изоляция обмоток. Продольной называют изоляцию между отдельными элементами данной обмотки — витками, катушками, слоями и др.; она выполняется при изготовлении обмотки и здесь не рассматривается. Главная изоляция, наоборот, почти вся устанавливается при сборке трансформаторов, поэтому кратко рассмотрим ее основные элементы.

Изоляция обмоток от верхнего и нижнего ярм обеспечивается масляными каналами и барьерами, образуемыми так называемой ярмовой изоляцией, перекрывающей поверхность ярма, обращенную к обмоткам. Ярмовая изоляция представляет собой электрокартонную шайбу (барьер) 1 (рисунок 9) с прикрепленными к ней прокладками 2 из прессованного электрокартона, создающими необходимый масляный промежуток.

1 — шайба, 2 — прокладка, 3 — заклепка
Рисунок 9 – Ярмовая изоляция трансформатора

При Т-образном сечении ярма для выравнивания полки ярмовой балки с плоскостью ярма применяют так называемую уравнительную изоляцию, заполняющую промежуток между ярмовой балкой и ярмовой изоляцией; ее выполняют из бука, березы или электрокартона (рисунок 10). Уравнительная изоляция из электрокартона образуется пластинами, имеющими форму подковы и сегмента, к которым с двух сторон прикреплены прокладки.

а — из дерева, б — из электрокартона; 1 — продольная планка, 2 — отверстие, 3 — поперечная планка, 4— пластина, 5 — электрокартонная прокладка
Рисунок 10 – Уравнительная изоляция трансформаторов I—III габаритов

В трансформаторах I и II габаритов на напряжение до 15 кВ размер изоляционного промежутка от обмотки до ярм невелик, поэтому у них ярмовая и уравнительная изоляции совмещены и выполнены из деревянных планок или электрокартонных деталей простой формы.

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Читайте также:
Разновидности межкомнатных дверей

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Рис. 4. Схематическое изображение ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.
  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
    • До 1 кВ;
    • Свыше 1 кВ.

    Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

    Расшифровка маркировки

    Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

    • Т — трансформатор тока;
    • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
    • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
    • ВТ — встроенный в конструкцию силового трансформатора;
    • Л— со смоляной (литой) изоляцией;
    • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
    • Ф — с надежной фарфоровой изоляцией;
    • Ш — шинный;
    • О — одновитковый;
    • М — малогабаритный;
    • К — катушечный;
    • 3 — применяется для защиты от последствий замыкания на землю;
    • У — усиленный;
    • Н — для наружного монтажа;
    • Р — с сердечником, предназначенным для релейной защиты;
    • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
    • М — маслонаполненный. Применяется для наружной установки.
    1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
    2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
    3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
    4. после позиции дробных символов — код варианта конструкционного исполнения;
    5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
    6. цифра на последней позиции — категория размещения.

    Схемы подключения

    Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

    Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

    При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

    Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

    Схема «неполная звезда» применяется для двухфазного соединения.

    В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

    Основные схемы подключения:

    • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
    • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
    • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
    • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

    Технические параметры

    Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

    Коэффициент трансформации

    Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

    У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

    Класс точности

    Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

    Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

    О назначении

    Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

    ТРАНСФОРМАТОР ТОКА – УСТРОЙСТВО И НАЗНАЧЕНИЕ

    Трансформатор тока

    Обеспечение конечного пользователя электроэнергией требует преобразовании “транспортных” параметров электрического тока в потребительские. Эту задачу, совместно с функцией измерения, решает трансформатор тока (ТТ).

    Существует несколько разновидностей таких устройств, классифицируемых по широкому диапазону параметров. В данной статье мы опишем основные характеристики, разновидности и область применения трансформаторов.

    Принципиальная конструкция ТТ, независимо от модели, состоит из следующих элементов:

    1. Шихтованный сердечник – в качестве материала изготовления может использоваться холоднокатаная электротехническая сталь или аморфные нанокристаллические сплавы. Второй вариант дороже, однако, значительно расширяет рабочий диапазон.

    2. Первичная обмотка. Представляет собой один виток или вообще один прямой провод. У некоторых моделей трансформаторов может быть использована шина, пропущенная через окно магнитопровода. Подключается к электроцепи последовательно.

    3. Вторичная обмотка – наматывается на сердечник и изолируется. В лабораторных и каскадных моделях ТТ допускается к использованию несколько групп вторичных обмоток. Как правило, к одной группе подключаются приборы измерения и контроля, а к другой – защитные устройства.

    К рабочим контактам обязательно необходимо подключить какие-либо устройства потребления – цепь должна быть нагружена. В противном случае напряжение может возрасти до величины способной пробить изоляцию. В случае если катушку разомкнуть, возникнут наведенные некомпенсированная токи, от которых магнитопровод может выгореть.

    По тому же принципу функционируют токоизмерительные клещи. Кабель играет роль первичной обмотки, смыкающиеся зубцы клещей оснащены вторичной обмоткой и выполняют функции магнитопровода.

    ОСНОВНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

    Сфера применения преобразующих устройств типа ТТ тесно связана с их основными параметрами и техническими решениями конструкции. В соответствии с ГОСТ 7746-2015 (общие техусловия), различают следующие ключевые параметры.

    Номинальное напряжение.

    Показатель рабочей величины напряжения в измеряемой электросети.

    Номинальный ток.

    Различают два типа этого показателя для первичной и вторичной цепи. Они протекают соответственно по первичной и вторичной обмотке устройства. При этом, номинальный рабочий электроток является константой и равен 1 или 5 А.

    Вторичная нагрузка.

    Показатель суммарного сопротивления всех устройств внешней цепи, подключенной к вторичной обмотке: счетчики электроэнергии, амперметры, устройства релейной защиты, таковые преобразователь. Параметр измеряется в омах (Ом).

    Коэффициент трансформации.

    Соотношение показателей первичного и вторичного тока. Данный параметр принято разделять на номинальный и реальный (действительный).

    Электродинамическая стойкость.

    Выражается в виде максимального показателя амплитуды электрического тока при коротком замыкании за единицу времени (как правило, за одну секунду). Обмотки трансформатора тока должны выдерживать указанное значение без пробоев или каких-либо других повреждений.

    Термостойкость.

    Максимальное значение силы тока при коротком замыкании за единицу времени (1 сек), при котором нагрев токоведущих частей трансформатора не превышает критических температур и не вызывает повреждений.

    ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ ТОКА

    Современные производители предлагают широкую номенклатуру трансформаторов. Чтобы облегчить выбор была разработана система классификации ТТ по нескольким параметрам.

    • измерительные – комплектуются приборами учета, подключенными к вторичной обмотке;
    • защитные – в состав входят разнообразные реле;
    • промежуточные – основная задача, это преобразование параметров тока первичной электросети и приведение этих значений к величинам пригодным для функционирования внешних потребляющих устройств;
    • многоступенчатые – имеют несколько вторичных обмоток, чем обеспечивают более широкие возможности трансформации;
    • лабораторные – повторяют принципиальную конструкцию многоступенчатых, но обеспечивают более высокий класс точности.
    ПО МЕСТУ УСТАНОВКИ

    Их установка регламентируется стандартами категорий размещения для электрооборудования ГОСТ 15150-69. В зависимости от модели допускается установка, как на открытом воздухе, так и в распределительном щитке открытого типа (ОРУ).

    Допускается установка только в закрытом помещении (специализированном или с дополнительно обустроенной вентиляцией по ГОСТ 15150-69) в ЗРУ или КРУ (закрытое или комплектное).

    Являются частью конструкции другого электрооборудования. Как правило, для обеспечения дифференциальной защиты общего устройства.

    Оборудование для измерений и испытаний электросетей и других электрических устройств. К примеру, лабораторные и измерительные трансформаторы тока.

    Используются в качестве электрооборудования на транспорте (морские суда и электровозы) или на производстве (высокочастотные электропечи).

    ПО СПОСОБУ УСТАНОВКИ, ТИПУ ОБМОТОК

    Такие устройства имеют специфическую конструкцию, позволяющую устанавливать их в стенных проемах или на металлических основаниях. Как правило, такие ТТ используются на старых трансформаторных подстанциях, выполняет функцию проходного изолятора.

    Специфика их конструкции состоит в расположении контактов первичной обмотки, один вывод расположен сверху другой снизу.

    Монтируются на ровном опорном основании. Отличительной особенностью конструкции является наличие контактов первичной обмотки в верхней части устройства либо по бокам корпуса.

    • одноступенчатые – один коэффициент;
    • многоступенчатые – несколько коэффициентов.

    Трансформаторы тока зачастую переделывают (как одно-, так и многоступенчатые), путем изменения числа витков на катушках. Однако при этом существенно снижается коэффициент точности.

    По конструкции или наличию первичной обмотки ТТ можно классифицировать на:

    Без первичной обмотки: встроенные, шины, разъёмные. Фактически, они состоят из магнитопровода со вторичной обмоткой. Функцию первичной обмотки выполняет стержень высоковольтного ввода электроцепи.

    Одновитковые: стержневые и u-образные. Используется на подстанциях промышленных предприятий для подключения устройств учета энергии.

    Многовитковые: петлевые, звеньевые. Используются в сложных многофазных сетях для контроля нескольких фаз.

    ПО ТИПУ ИЗОЛЯЦИИ

    Суть такой классификации состоит определении способа изоляции обмоток.

    1. Твёрдые: фарфор, бакелит, полимерные материалы типа капрона или эпоксидной смолы;
    2. Вязкие – компаунды изоляционных материалов;
    3. Смешанные – бумажно-масляные изоляционные материалы;
    4. Газовые: элегаз или воздух.

    Классов трансформаторов тока по напряжению бывает только два – до одного киловатта и более.

    МАРКИРОВКА ТОКОВЫХ ТРАНСФОРМАТОРОВ

    Условное обозначение устройств отечественного производства осуществляется в соответствии с нормативной документацией и техническими условиями ми (ТУ).

    Она имеет следующий вид:

    • Т – первая буква в обязательном порядке “Т” означает, что устройства относятся к трансформаторным;
    • N – конструкционные особенности устройства: проходной (П), опорный (О), с использованием шины в качестве первичной обмотки (Ш), с фарфоровой изоляцией корпуса (Ф);
    • M – материал изоляции обмоток: “М” – масляная (фактически, смешанная бумажно-масляная изоляция), “Л” – литая (эпоксидная смола), “Г” – газовая;
    • Х1 – значение рабочего (номинального) напряжения;
    • Х2 – вариант конструкционного исполнения. Как правило, касается расположения контактов первичной и вторичной обмоток как;
    • Х3 – габаритные размеры корпуса. Чаще всего, эта маркировка применяется для трансформаторов, устанавливаемых в силовых шкафах. Код привязывают к длине корпуса;
    • Х4 – буквенный код определяющий расположение выводов вторичной катушки относительно установочного основания. “А” – параллельно установочной поверхности, “Б” – перпендикулярно относительно установочной поверхности;
    • Х5 – наличие и тип изолирующих барьеров;
    • Х6 – значение точности при передаче данных, внешняя цепь;
    • Х7 – коэффициента безопасности для исходящих катушек (измерительные цепи);
    • Х8 – значение точности для исходящих катушек (измерительные цепи);
    • Х9 – коэффициент кратности;
    • Х10 – рабочее значение нагрузки для устройств измерения;
    • Х11 – рабочее значение нагрузки для устройств защиты;
    • Х12 – значение входящего и исходящего тока;
    • Х14 – максимальное значение силы тока при односекундном воздействии короткого замыкания на пределе термической стойкости;
    • Х15 – климатическое исполнение оборудования.

    ОБЛАСТЬ ИСПОЛЬЗОВАНИЯ И ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

    Трансформаторы тока используется для преобразования параметров электроэнергии первичных цепей высокого напряжения. Они выполняют две основные функции:

    1. Приведение характеристик тока к величинам, которые могут использовать различные электроприборы: счетчики, измерительные устройства, защитные реле.

    2. Физическая отделение (изоляция) исполнительных устройств, подключенных измерительным и защитным цепям, от высоковольтных кабелей линий электропередач.

    ПОДКЛЮЧЕНИЕ СЧЕТЧИКА ЧЕРЕЗ ТРАНСФОРМАТОР ТОКА

    Так как подсоединять измерительные устройства к первичной цепи питания прямым включением нельзя используются ТТ, с соответствующим коэффициентом трансформации. К примеру, для выполнения учета потребления электроэнергии на линии с нагрузкой в 400А необходимо использовать трансформатор тока с рабочими показателями не менее 400/5.

    Подсоединение трансформаторов осуществляется на подстанции потребителя. Первичная катушка подключается к силовым контактам фаз (А и С) так называемая “схема неполной звезды”. К контактам вторичной обмотки подключается электросчетчик и амперметр. К примеру, модели САЗУ-ИТ и Э378 в щитовом исполнении.

    ПОДКЛЮЧЕНИЕ ЧЕРЕЗ ТРАНСФОРМАТОРЫ ТОКА РЕЛЕЙНОЙ ЗАЩИТЫ

    К примеру, необходимо установить релейную защиту на первичной (входящей) электроцепи с параметрами тока: напряжение 10 кВ и нагрузкой 1 кА. При таких показателях релейная защита не может быть включена в электроцепь напрямую напрямую.

    Для подключения рекомендуется использовать трансформаторы тока модель ТПЛ-10 с коэффициентом трансформации 1000/5 при использовании токовых реле и ТТ – НТМИ-10с коэффициентом трансформации 1000/100 для подключения реле напряжения.

    Также через этот тип трансформатора допускается подключение электросчетчика.

    На отечественных предприятиях и бытовых подстанциях чаще всего встречаются проходные трансформаторы тока с двумя вторичными обмотками, которые используются для учета потребления электроэнергии и установки релейной защиты соответственно.

    © 2014-2022 г.г. Все права защищены.
    Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

    Особенности, типы и виды обмоток трансформатора тока

    Виды обмоток трансформатора

    Электромагнитное оборудование, которое содержит несколько обмоток, расположенных на одном проводе и связанных индуктивно, называют трансформатором. Прибор необходим для преобразования электроэнергии тока с помощью магнитной индукции без изменения его частоты. Разные виды обмоток трансформатора используют во многих сферах электрической техники и электроники.

    Принципы работы

    У любого трансформатора в конструкции есть две или больше обмоток. Они связаны между собой электромагнитной индукцией, могут быть выполнены из проволоки или лент, покрытых слоем изоляции. Обмотки крепят на магнитопровод-сердечник, изготовленный из ферромагнитного мягкого материала. Если в устройстве всего один такой элемент, то оно называется автотрансформатором.

    В конструкцию входят определённые детали:

    • расширительный бак с крышкой;
    • изолятор;
    • магнитопровод (сердечник);
    • радиаторы;
    • две обмотки — низкого и высокого напряжения.

    Принципы работы трансформатора

    Принцип работы трансформаторов изучают ещё в школьном курсе физики, поэтому его легко понять даже школьнику. Первая обмотка получает напряжение, вследствие чего в ней начинает протекать переменный ток. Он создаёт в сердечнике магнитный поток, под воздействием которого в двух элементах появляется электродвижущая сила. Вторичная обмотка замыкается из-за нагрузки, после чего в ней тоже начинает протекать переменный ток, у которого параметры — напряжение и его кривая, частота и количество фаз — отличаются.

    Разделяют несколько типов трансформаторов по определённым параметрам:

    Несколько типов трансформаторов

    • количеству фаз — трех- и однофазные;
    • числу обмоток — трех- и двухобмоточные;
    • типу изоляции — масляные, сухие и с заполнителем, который не горит;
    • виду охлаждения — с естественным и принудительным масляным, воздушным и с содержанием азотной подушки.

    А также различают силовые, сетевые, автоматические, импульсные трансформаторы и устройства электрического тока. Они имеют отличия в конструкции, функциональности и принципах работы.

    Силовой агрегат

    Силовой трансформатор

    Силовой трансформатор — это агрегат с низкими частотами, который применяется в электрических сетях для преобразования энергии. Своё название прибор получил из-за того, что он используется для приёма и передачи тока на ЛЭП, где показатель напряжения в некоторых случаях достигает 1200 кВ. В городах оно находится в пределах 10 кВ, именно благодаря силовым трансформаторам оно понижается до 0, 4 кВ (220 и 320 В), которые необходимы потребителям.

    В конструкции прибора может находиться две и более обмоток, они расположены на броневом магнитопроводе, изготовленном из технической стали. Некоторые из элементов могут получать питание индивидуально. Это удобно при получении напряжения одновременно с нескольких генераторов.

    Обычно силовое оборудование помещают в бак с маслом, иногда его дополняет система охлаждения. Устанавливают агрегат на подстанциях, большее распространение имеют трёхфазные трансформаторы, так как они сокращают потери энергии на 15%.

    Сетевой прибор

    Сетевые приборы

    Сетевые приборы — виды трансформаторов тока, которые появились ещё в 80-х годах. Именно это устройство может преобразовать бытовое напряжение в 220 В в показатель, потребляемый электроприборами — 48, 24, 12 или 5 вольт. Иногда агрегаты выполняются с несколькими вторичными обмотками, так можно использовать сразу несколько источников питания. В схемах любой радиолампы всегда присутствует сетевой трансформатор накаливания.

    У современного оборудования сердечник имеет форму буквы Ш или стержня, изготовлен он из электротехнических стальных пластин, на которые навиваются обмотки. Трансформатор с компактными габаритами имеет тороидальный магнитопровод. При этом его мощность не уступает моделям с более крупными размерами и сердечниками других форм. К сетевым относят также сварочные устройства с мощностью до 6 кВт.

    Особенности автотрансформатора

    Если интересует, какие бывают трансформаторы, то среди низкочастотных можно выделить автоматическое оборудование. У таких агрегатов первичная обмотка является и вторичной одновременно. То есть элементы связаны не только индукцией, но и электричеством. С одной обмотки есть несколько выводов, поэтому она может давать одновременно разное напряжение. У прибора стоимость ниже, чем у остальных видов трансформаторов. Это обусловлено расходом меньшего количества проводов для одной обмотки, стали для магнитопровода и незначительной массы.

    Автотрансформаторы применяются в приборах автоматического управления и высоковольтных сетях. Оборудование с обмотками, соединёнными в треугольник или звезду, очень востребованы в современных системах электричества. Силовые агрегаты обладают мощностью до 100−200 мВт. Целесообразно использовать их при маленьких коэффициентах трансформации.

    Особенности автотрансформатора

    Ещё один вид автотрансформатора — лабораторный прибор. С его помощью можно плавно контролировать напряжение перед его подачей потребителю. По конструкции это трансформатор с одной обмоткой, у которой есть неизолированные витки проводов. То есть появляется возможность подключиться к каждой петельке отдельно.

    Установить контакт помогает скользящая щётка, которой можно управлять с помощью поворотной ручки. Во время нагрузки выходит напряжение разной величины, однофазные агрегаты выдают показатель от 0 до 250 В, а трёхфазные — до 450 вольт. В лабораториях используют менее мощные конструкции для настройки электрического оборудования.

    Оборудование тока

    Трансформатор тока

    Трансформатор тока — это прибор, первичная обмотка которого подключается к источнику питания, а вторичная присоединяется к измерительным устройствам с малым внутренним сопротивлением. Первый элемент — один провод или виток — включают в цепь последовательным путём для измерения переменного тока. При этом показатель вторичной обмотки, которая должна находиться под нагрузкой с высоким напряжением, способным пробить изоляцию, пропорционален первой. Если её разомкнуть, то магнитопровод просто сгорит от некомпенсированного тока.

    В конструкции сердечник изготовлен из кремнистой холоднокатаной стали, на него намотана одна вторичная обмотка. Первичная деталь обычно представляет собой шину или провод с током, пропущенный через отверстие сердечника. Высокий коэффициент трансформации — это главное преимущество такого агрегата. Трансформаторы тока часто применяются для измерения электричества и в различных схемах защиты реле.

    Так как цепи изолированы друг от друга, использование оборудования считается безопасным. Промышленные агрегаты выпускаются с несколькими группами вторичных обмоток. Одна из них подключается к защитному оборудованию, а вторая к устройству измерения — счётчику.

    Импульсная конструкция

    В сварочных аппаратах, блоках питания, инверторах и преобразователях тока с малой и средней мощностью установлены импульсные трансформаторы. Эти приборы уже давно вытеснили тяжёлое низкочастотное оборудование. Устройство имеет вид трансформатора с ферритовым сердечником в форме букв П или Ш, стержня, чашки или кольца. Их преимущество перед другими материалами состоит в возможности работать на частоте свыше 500 кГц.

    Так как это высокочастотный агрегат, то и его размеры незначительные. На обмотку требуется меньше провода, а одного или нескольких полевых транзисторов будет достаточно для получения тока. Количество дополнительного оборудования зависит от топологии схем питания:

    Трансформатор выполняет роль дросселя в случае, когда применяется обратноходовая схема питания. Ведь тогда процессы накопления и выдачи электрической энергии во вторичную цепь разделены определённым промежутком времени. Импульсные трансформаторы с ферритовыми сердечниками сегодня можно встретить практически везде. Они применяются в энергосберегающих лампах, сварочных аппаратах и инверторах, а также зарядных устройствах для мобильного телефона, ноутбука и планшета.

    Импульсный агрегат тока необходим для измерения направления электричества. Оборудование основано на кольцевидном ферритовом сердечнике с одной обмоткой. Через кольцо пропускают провод, а элемент с витками получает нагрузку на резистор.

    Производители выпускают разные модели трансформаторов, обладающие некоторыми отличиями в коэффициентах производительности. Чтобы узнать направление электричества, обмотку нагружают двумя встречными стабилитронами.

    Сфера применения

    Курс школьной физики дал ученикам некоторые понятия о работе и применении трансформаторов. Например, что потеря мощности всегда прямо пропорциональна квадрату силы электрического тока, поэтому нужно повышать напряжение для передачи электричества на значительное расстояние. Перед переходом тока к потребителям показатель, наоборот, необходимо понижать. Именно для этого и используют различные виды трансформаторов.

    Сфера применения трансформатора

    А также оборудование используется в схемах питания бытовой техники. Агрегаты с несколькими группами обмоток установлены в телевизорах, мониторах компьютеров. Они питают схемы, выполняют функции транзистора и кинескопа. Устройство трансформаторов также изучают ещё на школьных уроках.

    Без трансформаторов электрические сети и некоторые виды оборудования не смогут нормально функционировать, поэтому необходимо хотя бы поверхностно знать устройство агрегатов, принципы их работы, особенности конструкции и отличия в разных моделях. Это позволит самостоятельно устранять неполадки в некоторой домашней технике, промышленном оборудовании и мобильных гаджетах.

    Трансформаторы тока назначение и принцип действия

    Для измерения величин с большими значениями применяются трансформаторы тока. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

    Что такое трансформатор тока?

    К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

    Трансформаторы тока назначение и принцип действия

    Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

    Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

    • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
    • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

    Назначение трансформаторов

    Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

    Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

    Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

    Принцип работы

    Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

    При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

    Классификация трансформаторов тока

    Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

    Трансформатор тока: конструкция, схемы и его виды

    Трансформатор тока — это электротехнический или электромагнитный инструмент, который предназначен для изменения тока с больших величин на меньшие (то есть на более удобные для его эксплуатации).

    Для эффективного использования защитных систем линий электропередач необходим ее тотальный контроль. К слову, данный контроль осуществляется не с помощью простого трансформатора, а благодаря трансформатору тока, который способен отслеживать и регулировать величину тока первичных и вторичных обмоток.

    Линии электропередач

    Конструкция и устройство трансформатора тока

    Итак, если говорить о конструкции трансформатора тока, то следует начать с его внешнего вида.

    Трансформатор тока в разрезе

    Прежде всего, обратим внимание на шину, сердечник и диэлектрический корпус, а точнее, на его наличие. Для кого-то это покажется странным, но без него в конструкции трансформатора не обойтись. При этом этот корпус по форме может отличаться: он может быть представлен и в цилиндрическом виде, и в прямоугольном, и в квадратном.

    В середине корпуса располагается небольшой промежуток, служащий охвату проводов, которые выступают в качестве первичной обмотки.

    Раз уж мы коснулись обмотки, то нельзя не сказать о внутреннем устройстве трансформатора и двух видах обмотки (смотреть рисунок).

    Устройство измерительного трансформатора тока

    Схема трансформатора тока

    Принципиальные схемы конструкций трансформаторов

    Схема трансформатора тока состоит из следующих важных элементов:

    1. Нескольких магнитных проводов;
    2. Первичной обмотки;
    3. Вторичной обмотки;
    4. Клеммов;
    5. Выводов;
    6. Стального сердечника;
    7. Реле;

    Обмотки трансформатора тока располагаются на повальном сердечнике (что играет роль в возникновении явления электромагнитной индукции).

    Если говорить о сердечнике, то он выполняется при помощи электротехнического материала и играет роль магнитного провода.

    Сердечник из стальных листов

    Клеммы, в свою очередь, имеющие определенную маркировку, главным образом обеспечивают процесс входа и выхода тока с первичной и вторичной обмоток.

    А вот реле трансформатора тока, подключенное к кабелю, обеспечивает правильное функционирование устройства, снижая величину тока до необходимого значения.

    Подключение трансформатора тока

    Подключение трансформатора тока в цепь может осуществляться сразу несколькими способами:

    Схема 1

    Итак, данная система состоит сразу из трех трансформаторов тока, которые обобщены и закреплены в одну звезду. Эту схему принято использовать в качестве цепной защиты от короткого замыкания (будь то многофазное или однофазное замыкание). В том случае, если по цепи проходит ток ниже установленного уровня реле (ka 1-ka 3), то режим работы будет считаться нормальным и цепная защита короткого замыкания не сработает.

    Схема 1

    Стоит сказать, что ток, протекающий в цепи от ka 0-реле, принято воспринимать в виде геометрической суммы тока (сумма всех 3-х его фаз) Если увеличить в какой-либо фазе ток, то защитная цепь короткого замыкания включится в работу (реле (ka 1-ka 3)).
    Для отключения трансформатора в этой цепи и схеме необходимо по-просту приземлить ток.

    Схема 2

    Вторая схема подключения трансформатора тока в цепь имеет схожие черты с первой. Однако, есть существенные отличия, о которых нельзя не сказать. Итак, это структура, включающая несколько трансформаторов тока, как правило, используется в целях безопасности цепи от межфазного замыкания (важное замечание — электрическая цепь имеет нейтральную заземленность).

    Схема 2

    Данная система начнет работать в случае прохождения тока через реле (опять же ka 1-ka 3) и наличия не самых мощных элементов (потребителя и источника).

    Схема 3

    Пришло время поговорить и о схеме под номером три, не имеющей серьезных отличий от предыдущих. Она представляет из себя некое соединение в форме треугольника, где нормальный режим работы осуществляется путем проникновения тока в реле.

    Схема 3

    Как правило, эта структура применяется в электрических установках для проведения релейных ( релейных — означает дифференциальных, которые отличаются своей селективностью и быстротой действия).

    Схема 4

    И, наконец, последний — четвертый вид схемы.

    Схема 4

    Данная структура считается достаточно практичной и универсальной. Это связано с тем, что процесс подключения трансформатора тока в таком виде не только позволяет защитить электрическую цепь от однофазных/межфазных замыканий, но и способна повысить величину тока в необходимых реле.

    Отключение также происходит путем заземления.

    Основная схема подключения измерительного трансформатора тока

    Плавно мы подошли к основной схеме подключения измерительного трансформатора тока.

    Схема подключения измерительного трансформатора тока

    На рисунках 1 и 2 трансформатор имеет обозначение “TA” с индексами и представлен в схемах с двухфазными и трехфазными обмотками. Стоит уточнить, что имея формы полной звезды и неполной, трансформаторы включены в изолированную, а самое главное нейтральную сеть.

    Кроме того, добавим, что структура подключения этого “TA” применяется для защиты от замыканий цепи, а также регулирования баланса между фазами.

    Принцип работы трансформатора тока

    Принцип работы трансформатора тока основан на принципах электромагнитной индукции, которая действует в электрическом/магнитном поле. Более подробная информация представлена на рисунке:

    Как работает трансформатора тока

    Он преобразовывает начальное значение векторного тока, проходящего в электрической цепи, во вторичную величину (при этом важно учесть фактор пропорционального равенства между модулем и углом передачи тока).

    Катушка ТТ

    Первичная обмотка устройства, имеющая некое число витков (W1), пропускает через себя ток (I1). Ток, в свою очередь, преодолевает некоторое сопротивление (Z1).

    Рядом с данной катушкой происходит процесс образования магнитного потока (Ф1), регулируемый при помощи перпендикулярно-расположенных магнитных проводов (важное замечание — именно такое расположение может обеспечить минимальную потерю во время преобразования электроэнергии).

    Внутренности трансформатора тока

    После пересечения перпендикулярных витков (W2) обмотки, (Ф1) — магнитный поток формирует силу электрического движения (Е2). Эта сила вызывает возникновение тока (I2) на обмотке (вторичной). А вот I2, который подключен к нагрузке выхода (Zн), преодолевает Z2 — сопротивление, и способствует образование меньшего напряжения на концах электроцепи.

    Значение K 1 — коэффициент трансформации — определяется выражением: I1 / I2 (отношение первого вектора ко второму). Величина этого отношения вычисляется в начальных построениях проектирования устройства.

    Различия между истинными показателями модели и расчетным результатом объясняется важным аспектом метрологии, которым является вид класса точности устройства.

    Важно — на практике ток во вторичной обмотке не является постоянным, именно это определяет значение K1 . К примеру, его отношение 10000/50 обозначает следующее: во время прохода электротока по области первичной обмотки единица килоампера области вторичной обмотки приравнивается к величине пятидесяти килоампер.

    Таким образом, коэффициент трансформации оказывает прямое влияние на длительность использования трансформатора тока. Не забудем о магнитном потоке (Ф2), который способствует уменьшению величины I2 в магнитном проводе вторичной обмотки.

    Во время эксплуатации трансформатора тока нельзя забывать про возникновение нежелательных проблем, одной из которых является пораженческая способность пробоя изоляции (из-за высокого потенциала).

    Так как магнитный провод трансформатора тока имеет металлический компонент в строении, у него есть отличные свойства проводимости, которые помогают ему соединить между собой первичную и вторичную обмотки.

    Несмотря на то, что обмотки изолированы, у того, кто эксплуатирует трансформатор, все равно присутствует риск получения повреждений и травм от этого электрического прибора.

    Для того, чтобы риски минимизировать, необходимо использовать заземление какого-либо вывода устройства (для предотвращения короткого замыкания из-за высокого потенциала). Кроме того, нужно сказать и про возможный разрыв на вторичной обмотке цепи из-за перенапряжения устройства.

    Трансформатор

    Говоря о принципах работы трансформатора тока, скажем и о том, что к его главному предназначению следует отнести решение эксплуатационных задач электротехнических систем, ведь наша промышленность готовит огромный ассортимент выпуска электрических установок, которые не всегда обладают 100-процентным коэффициентом полезности.

    А трансформатор способен этот КПД увеличить благодаря усовершенствованию схем и конструкций.

    Идеальный трансформатор тока: уравнение

    Идеальный трансформатор тока представляет из себя электромагнитное устройство, которое способно не допускать потерю энергию во время увеличения напряжения и во время рассеивания обмотков.

    Итак, уравнение для такого трансформатора будет выглядеть следующим образом:

    • U2/U1 — отношение напряжения на конце вторичной обмотки к напряжению первичной;
    • N2/N1 — отношение числа витков вторичной обмотки к числам витков первичной;
    • I1/I2 — отношение тока первичной цепи ко вторичной;
    • n — трансформационный коэффициент.

    Виды трансформаторов тока

    В современном мире существует огромное различных видов трансформаторов, которых можно классифицировать сразу по нескольким признакам.

    Виды трансформаторов тока

    По месту установки

    Начнем с видов трансформаторов, которые классифицируются по месту установки:

    1. Специальные (используются в транспортных средствах и производственных предприятиях);
    2. Встроенные (устанавливаются в конструкции других электрических приборах);
    3. Внутренние (используются в закрытых комплексных предприятиях);
    4. Наружные (устанавливаются на открытом воздухе);
    5. Переносные (универсальные, можно устанавливать и на открытом воздухе, и в закрытых лабораториях).

    По способу установки

    Продолжим видами трансформаторов, которые классифицируются по способу установки:

    1. Опорные (одноступенчатые и многоступенчатые устройства);
    2. Проходные (образуют металлическую подставку и устанавливаются на производственных станциях).

    По типу витков

    Подошла очередь видов тех трансформаторов, которые классифицируются по типу витков:

    1. С одним витком (имеют форму стержня и используются в производственных предприятиях);
    2. Со множеством витков (имеют форму петли и устанавливаются в многофазных системах и конструкциях);
    3. Без первичной обмотки (имеют форму шин и применяются в качестве контроля фаз электрической сети ).

    По назначению

    Заканчиваем видами трансформаторов, которые классифицируются по различным назначениям:

    1. Лабораторные (способны обеспечить высокую точность величин);
    2. Измерительные (являются приборами учета);
    3. Многоступенчатые (имеют сложное строение, поэтому способны устроить процесс трансформации электротока);
    4. Промежуточные (способны преобразовать значение тока первичной обмотки или вторичной);
    5. Защитные.

    Достоинства трансформатора тока

    Много трансформаторов

    Трансформаторы тока имеют огромное количество достоинств, о которых следует рассказать. Вот главные:

    1. Способность регулировать электрический ток в цепи;
    2. Простая изоляция (гарантия безопасности во время эксплуатации);
    3. Точность действий и простота использования прибора;
    4. Большой охват и интервал измерения электрического тока;
    5. Не самые большие габариты (в зависимости от вида);
    6. Не самая существенная масса (в зависимости от вида);
    7. Развязка первичной цепи;
    8. Развязка вторичной цепи;
    9. Практически полная независимость от внешней температуры;
    10. Способность выдерживать процесс перенапряжения;
    11. Способность быстрого восстановления после короткого замыкания цепи;
    12. Способность передавать даже электрический импульс.

    Применение трансформатора тока

    Главной особенностью трансформатора является его способность преобразовать ток из одной величины в другую. Этим и можно объяснить его широкое применение в современном обществе.

    Трансформатор тока используется в электрических сетях для передачи электроэнергии на длинный расстояния с минимальными рисками возникновения замыканий или перенапряжений.

    Также данное устройство применяют в электрических источниках питания.

    Линии электропередач около полей

    Кроме того, “ТТ” способен обеспечит некий контакт с землей и благодаря эффекту заземления обезопасить окружающих от переизбытка тока.

    Если говорить о быте, то трансформатор тока используется в радиоэлектронике, в сварочных аппаратах и другой электротехнике.

    Различные элементы радиоэлектроники

    Где приобрести трансформатор тока?

    Как вы уже поняли из ранее прочитанного материала — трансформатор тока является очень востребованным прибором. Его широкое применение, прежде всего, объясняется качественными характеристиками, которые позволяют устройству выполнять различные электротехнические “задачи”.

    Итак, трансформатор тока может понадобиться любому из нас. На случай, если это коснется и вас, то посоветую вам приобрести данный электромагнитный прибор (или его аналог) на Aliexpress (жми). Там, как всегда, хороший и богатый выбор, а также выгодные цены на товары.

    А вот вашему вниманию старое, но познавательное видео:

    Все о трансформаторах тока. Классификация, конструкция, принцип действия

    Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

    Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

    Конструкция и принцип действия трансформатора тока

    Трансформаторы тока конструктивно состоят из:

    • замкнутого магнитопровода;
    • 2-х обмоток (первичной, вторичной).

    Трансформаторы тока

    Орлов Анатолий Владимирович

    Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная – замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.

    Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

    Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

    Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

    К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

    Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

    Интересное видео о трансформаторах тока смотрите ниже:

    Погрешность ТТ определяется в зависимости от:

    • сечения магнитопровода;
    • проницаемости используемого для производства магнитопровода материала;
    • величины магнитного пути.

    Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

    Предельное значение сопротивление нагрузки указывается в справочных материалах.

    Классификация трансформаторов тока

    Трансформаторы тока принято классифицировать по следующим признакам:

    1. В зависимости от назначения их разделяют на:
      1. защитные;
      2. измерительные;
      3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
      4. лабораторные.
      1. наружной установки (размещаемые в ОРУ);
      2. внутренней установки (размещаемые в ЗРУ);
      3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
      4. накладные — устанавливаемые сверху на проходные изоляторы;
      5. переносные (для лабораторных испытаний и диагностических измерений).
      1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
      2. одновитковые;
      3. шинные.
      1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
      2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
      3. имеющие заливку из компаунда.
      1. одноступенчатые;
      2. двухступенчатые (каскадные).
      1. ТТ с номинальным напряжением — выше 1 кВ;
      2. ТТ с напряжением – до 1 кВ.

      Все о трансформаторах тока. Классификация, конструкция, принцип действия

      Ещё одно интересное видео о схемах включения трансформаторов тока:

      Трансформаторы тока разных производителей

      Рассмотрим несколько трансформаторов тока разных производителей:

      Трансформаторы тока ТОЛ-НТЗ-10-01

      Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

      Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

      Рабочее положение трансформатора в пространстве – любое.

      Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

      • класс нагревостойкости «В» по ГОСТ 8865-93;
      • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

      Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

      Расположение вторичных выводов:
      • «А» — параллельно установочной поверхности;
      • «В» — перпендикулярно установочной поверхности;
      • «С» — из гибкого провода, параллельно установочной поверхности;
      • «D» — из гибкого провода, перпендикулярно установочной поверхности.

      ТОЛ-НТЗ-10-01 1

      Требования к надежности

      Для трансформаторов установлены следующие показатели надежности:

      • средняя наработка до отказа – 2´105 ч.;
      • полный срок службы – 30 лет.
      Пример условного обозначения опорного трансформатора тока с литой изоляцией

      ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

      • 10 — номинальное напряжение;
      • «0» — конструктивный вариант исполнения;
      • «1» — исполнение по длине корпуса;
      • «А» — вторичные выводы расположенные параллельно установочной поверхности;
      • «Б» — изолирующие барьеры;
      • 0,5S — класс точности измерительной вторичной обмотки;
      • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
      • 10Р — класс точности защитной вторичной обмотки;
      • 10 — номинальная предельная кратность вторичной обмотки для защиты;
      • 5 — номинальная вторичная нагрузка обмотки для измерения;
      • 15 — номинальная вторичная нагрузка обмотки для защиты;
      • 300 — номинальный первичный ток;
      • 5 — номинальный вторичный ток;
      • 31,5 — односекундный ток термической стойкости;
      • «УХЛ» — климатическое исполнение;
      • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

      TОП-066Опорные трансформаторы тока TОП-0,66

      Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

      Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

      Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

      • высота над уровнем моря не более 1000 м;
      • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
      • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
      • рабочее положение — любое.

      TОП-066 1

      presentation

      Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

      Проходные шинные трансформаторы тока для внутренней установки BB, BBO

      Изготовитель — Фирма ООО «ABB»

      Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

      Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

      Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

Ссылка на основную публикацию