Оценка теплопотерь дома: как правильно проводить тепловизионное обследование

Оценка теплопотерь дома: как правильно работать с тепловизором

Тепловизионное обследование позволяет провести работы по уменьшению теплопотерь правильно и экономно. Благодаря наглядности, оперативности и достоверности получаемых результатов, оно зарекомендовало себя как один из наиболее оптимальных и объективных методов диагностики строений по окончании их возведения либо реконструкции, а также в процессе эксплуатации. Проводится такое обследование с помощью тепловизора. Это особый прибор, «видящий» температуру предметов. Регистрируя инфракрасное излучение объектов, он преобразует его в изображение, видимое человеческому глазу. Получаемая при энергетическом аудите здания «картинка» помогает распознать, где в доме находятся проблемные места.

В результате грамотно произведенной тепловизионной диагностики домовладелец получает исчерпывающую информацию об изъянах ограждающих конструкций и может четко спланировать свою работу по утеплению и изоляции жилья.

Диагностика тепловизором на страже вашего бюджета

Если вы на пороге «глобального приобретения» — покупки коттеджа, или планируете строительство загородного дома, тепловизионное обследование строения для проверки качества выполненных работ будет не просто желательной, а весьма необходимой процедурой. Почему? Посудите сами, современное строительство – это обилие новых технологий и материалов, позволяющее дизайнерам и мастерам воплощать в жизнь самые невероятные «архитектурные формы», возводить здания все быстрее и быстрее. Но далеко не все «трендовые» материалы обладают хорошим качеством, а специалисты зачастую заботятся лишь о презентабельности своих трудов, напрочь забывая о вопросах температурного комфорта и энергосбережения. И в итоге получается, что дом красив, но малопригоден для жизни.

Тепловизионное обследование ограждающих конструкций загородного дома – услуга недешевая, но окупаемая на все 100. Аренда тепловизора позволит не покупать дорогостоящий прибор и сделать качественное обследование. Если диагностика будет произведения сразу после постройки дома, до старта внутренней отделки, то все возможные дефекты будет выявлены своевременно, и не придется тратиться на внеплановую переделку, перепланировку холодных помещений. При покупке уже готового коттеджа тепловизор убережет вас от невыгодной сделки или позволит поднять вопрос о скидке. Удивительно, но в наше «продвинутое» время очень малый процент собственников осведомлен о возможностях и преимуществах тепловизионной диагностики дома. Уверенные в своем профессионализме строители зачастую сами рекомендуют клиентам провести такой контроль, а вот недобросовестные о таком тесте предпочитают помалкивать.

Специфика и технология обследования

Оптимальным для диагностики считается холодное время года. Система отопления дома должна на момент тестирования функционировать не менее 2-х суток. Минимально допустимая разница между температурой в доме и «за бортом» — 15 градусов (желательно около 20). Проводится обследование исключительно высококлассными устройствами, демонстрирующими четкую тепловую картину и позволяющими обнаружить максимальное количество дефектов.

– Внутренняя съемка. Наиболее важный этап, позволяющий выявить более 85% дефектов. Съемка производится тщательно, ни в коем случае не выборочно, исследуется каждая стена, каждое окно или дверь. – Ведь даже в одной комнате одно окно может быть установлено правильно, а другое с нарушением технологии, один угол сухой, другой сырой и т.д.
– Внешняя съемка. Эффективна в отношении выявления дефектов кровли и утепленных фасадов.
– Обработка результатов.
– Компьютерная обработка термограмм.
– Создание отчета с подробной классификацией дефектов, указанием причин их возникновения, рекомендациями по устранению.

Тепловизионное обследование подразумевает поэтапную термографическую съемку различных зон ограждающих конструкций, которые обязательно должны быть открыты для съемки. Поэтому перед приездом специалистов позаботьтесь о том, чтобы были свободны подоконники, присутствовал доступ к плинтусам и не были загроможденными углы, образованные внешней стеной либо внешней стеной и перегородкой.

Оценка теплопотерь дома: как правильно проводить тепловизионное обследование

Оценка теплопотерь дома: как правильно проводить тепловизионное обследование

«Мой дом — моя крепость», — гласит народная мудрость. И ведь действительно хочется, чтобы жилье было тем местом, в котором будешь чувствовать себя в полной безопасности, которое надежно укроет и от летнего зноя, и от зимней стужи. Одним из наиболее животрепещущих для каждого хозяина вопросов является способность дома сохранять тепло, ведь от этого напрямую зависит комфорт пребывания в доме в холодное время года и эффективность работы системы отопления – а значит здоровье членов семьи и «самочувствие» кошелька. Возможно ли оценить качество теплозащиты строения, найти места скрытых дефектов и повреждений, способствующих утечке тепла? Безусловно. Причем с помощью несложного и доступного метода – тепловизионной диагностики.

Зачем нужно делать тепло-анализ?

Тепловизионное обследование позволяет провести работы по уменьшению теплопотерь правильно и экономно. Благодаря наглядности, оперативности и достоверности получаемых результатов, оно зарекомендовало себя как один из наиболее оптимальных и объективных методов диагностики строений по окончании их возведения либо реконструкции, а также в процессе эксплуатации.

Проводится такое обследование с помощью тепловизора. Это особый прибор, «видящий» температуру предметов. Регистрируя инфракрасное излучение объектов, он преобразует его в изображение, видимое человеческому глазу. Получаемая при энергетическом аудите здания «картинка» помогает распознать, где в доме находятся проблемные места.

В результате грамотно произведенной тепловизионной диагностики домовладелец получает исчерпывающую информацию об изъянах ограждающих конструкций и может четко спланировать свою работу по утеплению и изоляции жилья.

Эффективность тепловизионной диагностики

Тепловизионная диагностика жилья полезна только в том случае, если за ней следует комплекс мер по исправлению выявленных недостатков

Диагностика тепловизором на страже бюджета

Если вы на пороге «глобального приобретения» — покупки коттеджа, или планируете строительство загородного дома, тепловизионное обследование строения для проверки качества выполненных работ будет не просто желательной, а весьма необходимой процедурой.

Читайте также:
Садовый лабиринт в ландшафтном дизайне

Почему? Посудите сами, современное строительство – это обилие новых технологий и материалов, позволяющее дизайнерам и мастерам воплощать в жизнь самые невероятные «архитектурные формы», возводить здания все быстрее и быстрее. Но далеко не все «трендовые» материалы обладают хорошим качеством, а специалисты зачастую заботятся лишь о презентабельности своих трудов, напрочь забывая о вопросах температурного комфорта и энергосбережения. И в итоге получается, что дом красив, но малопригоден для жизни.

Тепловизионное обследование объекта

Заказывайте тепловизионную диагностику только у проверенных фирм и специалистов, поскольку недостоверные результаты обследования полностью обесценивают весь смысл мероприятия

Тепловизионное обследование ограждающих конструкций загородного дома – услуга недешевая, но окупаемая на все 100. Если диагностика будет произведения сразу после постройки дома, до старта внутренней отделки, то все возможные дефекты будет выявлены своевременно, и не придется тратиться на внеплановую переделку, перепланировку холодных помещений. При покупке уже готового коттеджа тепловизор убережет вас от невыгодной сделки или позволит поднять вопрос о скидке.

Удивительно, но в наше «продвинутое» время очень малый процент собственников осведомлен о возможностях и преимуществах тепловизионной диагностики дома. Уверенные в своем профессионализме строители зачастую сами рекомендуют клиентам провести такой контроль, а вот недобросовестные о таком тесте предпочитают помалкивать.

Специфика и технология обследования

Оптимальным для диагностики считается холодное время года. Система отопления дома должна на момент тестирования функционировать не менее 2-х суток. Минимально допустимая разница между температурой в доме и «за бортом» — 15 градусов (желательно около 20). Проводится обследование исключительно высококлассными устройствами, демонстрирующими четкую тепловую картину и позволяющими обнаружить максимальное количество дефектов.

Оценка теплопотерь квартиры

Наружное утепление стен данной квартиры выполнено недоброкачественно — термограмма тому подтверждение. Тепловая изоляция не просто не эффективна, она провоцирует еще большие теплопотери

Состоит полноценная тепловизионная диагностика из таких этапов:

  1. Внутренняя съемка. Наиболее важный этап, позволяющий выявить более 85% дефектов. Съемка производится тщательно, ни в коем случае не выборочно, исследуется каждая стена, каждое окно или дверь. Ведь даже в одной комнате одно окно может быть установлено правильно, а другое с нарушением технологии, один угол сухой, другой сырой и т.д.
  2. Внешняя съемка. Эффективна в отношении выявления дефектов кровли и утепленных фасадов.
  3. Обработка результатов.
  4. Компьютерная обработка термограмм.
  5. Создание отчета с подробной классификацией дефектов, указанием причин их возникновения, рекомендациями по устранению.

Тепловизионное обследование подразумевает поэтапную термографическую съемку различных зон ограждающих конструкций, которые обязательно должны быть открыты для съемки. Поэтому перед приездом специалистов позаботьтесь о том, чтобы были свободны подоконники, присутствовал доступ к плинтусам и не были загроможденными углы, образованные внешней стеной либо внешней стеной и перегородкой.

Анализ влажности помещения

Благодаря многорежимной тепловизионной съемке можно обнаружить все возможные нарушения тепловой защиты дома или квартиры. Однако не всегда даже подробнейший анализ термограмм может дать однозначный ответ о причинах проблем.

Тепловизионная диагностика квартиры

Даже единичные «очаги» плесени на стенах и потолке говорят о том, что с тепловым состоянием жилья есть существенные проблемы. Своевременное тепловизионное обследование дома поможет предотвратить усугубление ситуации

К примеру, дефекты воздухопроницаемости – благоприятная «среда» для образования конденсата. А факт наличия последнего можно достоверно установить исключительно при помощи сканера влажности с высокой чувствительностью. Поэтому участки поверхностей, на которых наблюдались температурные аномалии, обязательно должны быть проверены также и «вспомогательным устройством». Особенно важно применять сканер при обследовании деревянных и каркасных сооружений: наличие влаги в ограждающих конструкциях для них особенно губительно, при ее обнаружении ремонт должен быть начат незамедлительно.

Планируя работы по утеплению дома также очень важно владеть информацией о наличии влаги, поскольку применение паронепроницаемых материалов способно законсервировать воду в стенах и перекрытиях со всеми вытекающими из этого негативными последствиями.

Тепловизор своими руками – стоит ли?

Тепловизор – устройство с «большими возможностями». Ведь кроме поиска теплопотерь он еще умеет оценивать работоспособность оборудования и систем отопления, находить дефекты и участки перегрузки электрооборудования и др. Владеть таким прибором не отказался бы ни один домовладелец. Но цена такого чуда техники не может не огорчать – 80-400 тысяч рублей в среднем.

При наличии желания, сноровки и необходимых «компонентов» можно попытаться сконструировать тепловизор своими руками, причем довольно-таки бюджетный. Вам это кажется невозможным? В 2010 году два студента из Германии М. Коул и М. Риттер своей уникальной разработкой доказали обратное. Их детище на базе микроконтроллера Arduino оказалось совсем несложным в изготовлении и потребовало затрат на сумму всего-то около 100 долларов.

Тепловизор своими руками

Одним из основных недостатков самодельного тепловизора является долгое время ожидания изображения, но учитывая просто смешную стоимость прибора на фоне оригинального устройства, на это можно смело закрыть глаза

Так что вооружившись старой веб-камерой, микроконтроллером, сервоприводами, датчиком температуры, лазерной указкой и найдя в сети подробную инструкцию по сборке от «первооткрывателей», можно соорудить устройство пусть и далекое от визуального и технического совершенства, но весьма полезное в «хозяйстве».

Тепловизионное обследование дома — когда деньги идут на ветер.

обследование дома тепловизором

Обследование дома тепловизором или как его правильнее будет называть энергоаудит здания, очень модная и не всегда дешевая услуга.

Читайте также:
Обои словацкого бренда Maxwаll в интерьере : виниловые и флизелиновые изделия, отзывы

Многие фирмы и частные мастера, купившие дорогой навороченный тепловизор, стали предлагать ее чуть ли не повсеместно. А есть ли толк от такого исследования, давайте разберемся подробнее.

что дает тепловизор при обследовании дома

Во-первых, если проводить данное обследование полноценно, знайте что оно должно стоить гораздо дороже, чем предлагают отдельные частники (5-6 тыс. рублей). Те кто купил такой прибор для заработка, безусловно будет говорить, что без этого обследования никуда.

Им элементарно нужно отбить свои вложения. И не верьте, что такая работа занимает буквально пару минут. Во-первых, это потраченное время специалиста на приезд-отъезд, расходы на ГСМ.

в какое время суток лучше всего снимать термограммы дома

Амортизация техники, предварительные переговоры по телефону. Собственно сама съемка в зимний период времени на холоде, лазание по сугробам, лестницам и кустам. И все это в определенное время суток.

Подготовка отчета. Доставка его и подробное объяснение, что к чему. Ведь обработка информации, как правило, стоит гораздо дороже, чем сырые данные в виде красно сине-желтых картинок.

Грамотные специалисты перед выездом запрашивают по WhatsApp фотоснимки тех поверхностей, которые требуется простреливать. И зачастую после этого, даже отказываются выезжать (нет нормального подхода, в доме все стены заставлены мебелью, все обвешено сайдингом).

сколько стоит обследование дома тепловизором цены

А если уж они выехали, то не удивляйтесь, за что выставляют счета после таких обследований.

аэродверь для обследования дома тепловизором

Кроме того, технических средств, которые нужно будет привлекать для энергоаудита, требуется гораздо больше, чем один единственный тепловизор. Например, та же аэродверь.

Хотя если использовать только ее одну, то и здесь разницы большой не будет. Картинка углов примыкания стены к потолку, после затыкания всех вентиляционных отверстий и создания избыточного давления +50 миллибар или разрежения -50 миллибар, будет чуть-чуть с большей фильтрацией.

На практике это большого значения не имеет, так как в реалии мы живем не при избыточном, и не при недостаточном давлении в доме.

куда уходит тепло в доме

Почему же люди начинают обращаться за такой услугой? Самая главная причина – им кажется, что они платят слишком много денег за газ, за электричество из-за высоких теплопотерь.

официальное заключение после обследования дома тепловизором

И требуется понять, где эти теплопотери, чтобы исправить “косяки” строителей или наоборот предъявить их в качестве претензии. По поводу последнего, вам придется обращаться не к частнику, а в профессиональную компанию, которая выдаст официальное заключение.

Просто отчет с тепловизионными картинками от некоего мастера, прострелявшего тепловизором ваши стены, пол и крышу, никто всерьез не воспримет. Да и вы толком не будете знать, что же делать с этими данными, и насколько они точны.

что проверяется при обследовании дома тепловизором
что проверяется при обследовании дома тепловизором
что проверяется при обследовании дома тепловизором

Чаще всего, за этой услугой обращаются люди не только что заселившиеся в новые дома, а те, которые уже некоторое время в них пожили. То есть, вы фактически видите, что у вас высокие расходы, в доме холодно и никак невозможно его толком прогреть.

Приглашаете человека с тепловизором. А он при этом он, обязательно столкнется с некоторыми проблемами, про которые может и умолчать.

Грамотное тепловизионное обследование вещь технически сложная. А неграмотное, которое проводится в 90% случаев, никакой полезной картины вам не даст. По нескольким причинам. Вот основные из них.

проблемы при обследовании тепловизором как захватить всю стену

Например, практически всегда ваш дом стоит на каком-то участке, ограниченный забором. И мастер не сможет этот дом прострелять со всех сторон, потому что находясь в какой-то одной точке, он физически не захватит тепловизором всю стену.

набор панорамноо изображения из кусочков при обследовании тепловизором

А между тем, очень важно иметь общую картинку. Потому что, если вы не захватываете стену целиком, то вы будете вынуждены набирать ее из отдельных кусочков и затем складывать их.

Не зря разные модели комплектуются объективами с разным фокусным расстоянием. В более дорогих, есть даже возможность составить панораму из фрагментов объекта исследования.

А отдельные куски при этом могут давать совершенно разную температуру. Почему так происходит?

с какого расстояния требуется стрелять из тепловизора дом

Во-первых, время измерения будет отличаться. Во-вторых, разный угол и расстояние прострела.

В-третьих, при замере одного куска солнце будет за облачком, а на другом выйдет из-за него.

А самые важные условия для проведения энергоаудита:

  • отсутствие прямого солнечного света (солнце в дымке, или рано утром и поздно вечером, когда нет прямых солнечных лучей)
  • отсутствие ветра

влияние скорости ветра и коэффициент при обследовании здания тепловизором

Потому что если есть ветер, то он будет сильно искажать общую картину. При чем, при замерах разных стен, скорость ветра также может меняться.

Стреляли центр стены, ветер был 2 м/с. А при замерах по бокам уже 5-7 м/с. И все это учесть очень сложно.

Таким образом, вы не получите истинной картины температурного состояния поверхности. В качестве примера, вы можете взять одну точку на стене и измерить ее температуру сначала с одного угла дома, а потом с другого.

Вы удивитесь, но при одних и тех же настройках тепловизора, получатся разные показатели. Поэтому, если у вас нет полной картины всей стены, то в тепловизионное обследование вносится существенная погрешность.

как проводить замеры тепловизором внутри дома

Когда дом уже жилой, в нем всегда есть стационарная мебель, которую невозможно демонтировать.

Поэтому, если возле стен внутри дома стоит душевая кабинка, кухонная мебель, шкаф купе и т.д., то именно эти места от обследования будут скрыты.

Читайте также:
Озонаторы воздуха: что это такое и как ими пользоваться?

А та картина, которую вы увидите снаружи в этих точках, может быть далека от истинной. Объясняется это тем, что при обычном ”пироге” стены, вы увидите только температуру поверхности, на которую будут влиять одни лишь внешние условия.

почему нужно чистое помещение внутри при обследовании тепловизором

Что будет происходить изнутри, вам будет неизвестно. Поэтому для внутренних замеров нужно “чистое” помещение.

сколько тепла теряется через крышу и стены дома

Очень большая проблема это крыша. Чаще всего плохо утепляют именно ее.

Стандартная крыша имеет некий наклон. И находясь внизу с тепловизором, мастер практически ничего не увидит.

обследование здания частного дома тепловизором бесполезное занятие

Только отойдя куда-то подальше, под очень острым углом, можно хоть как-то ее прострелять.

зачем нужен квадрокоптер для снятия термограммы с крыши дома

Поэтому для грамотного снятия термограммы с крыши, практически всегда требуется квадрокоптер.

когда нельзя проводить измерения тепловизором дома

Еще одна проблема заключается в том, что термограммы можно снимать только при разнице температур внутри дома и снаружи, не меньше 15 градусов. Здесь действует принцип – чем больше, тем лучше. Теплой весной, летом или осенью проводить измерения нельзя.

Разница минимум должна быть 15 градусов, иначе вы ничего не увидите. Что такое эти самые 15С?

Например, при +20 градусах в помещении и нуле на улице, измерение производить можно, но все же лучше это делать зимой. Однако и здесь будут вмешиваться посторонние факторы.

снег на крыше можно ли снимать термограммы тепловизором

Если вы немного опоздали и на крышу уже лег снег, то ничего под этим снегом вы не увидите. Будь он толщиной всего 1см, не говоря уже о худших условиях.

хорошая тепловизионная картинка частного дома при энергоаудите

С вышеизложенными проблемами сталкиваются все мастера, но как правило не вводят в курс дела заказчиков. В итоге, в 90% случаев на разных объектах получается одна и та же тепловизионная картинка.

У вас есть окна и фундамент. Где-то в районе фундамента и окон температура будет немного выше, причем всегда.

А вам то какой толк от этого? Если это изначально было понятно и без тепловизора. Тепловизор прибор оптический. Он не видит что творится внутри ваших ограждающих конструкций.

хороший качественный пирометр для тепловизионного обследования здания

Вы можете купить хороший качественный пирометр и самостоятельно провести такое же тепловизионное обследование, с той лишь разницей, что у вас не будет видеоэкрана.

когда можно обойтись пирометром вместо тепловизора при обследовании дома

На экране у вас есть стена, где можно передвигать точки измерения и визуально выбирать то место, которое вас интересует.

Для того, чтобы сделать то же самое при помощи пирометра, придется нарисовать эту же стену на листке бумаги и прострелять точки вручную. После чего, перенести температуру на рисунок.

пирометр или тепловизор

Разница между пирометром за 10-15 тыс. рублей и тепловизором за 500 тысяч заключается только в том, что во втором случае не нужно ничего рисовать.

Поэтому задумайтесь, может и нет никакого смысла покупать такой дорогостоящий прибор для подобных обследований.

когда можно заказывать тепловизионное обследование

Как мы уже выяснили, тепловизионное обследование целесообразно заказывать только зимой или поздней осенью. Но если вы уже дожили до зимы, то просто дождитесь того времени, когда ляжет снег.

Вы легко сможете увидеть большую часть картины и своих проблем без какого-либо тепловизора. На что нужно обратить внимание и куда смотреть?

Как только выпадет снег, он сразу покажет все ваши ”дырки”, которые есть на главной причине теплопотерь – крыше. А как уже говорилось ранее, именно ее труднее всего обследовать не имея летательных аппаратов.

как без тепловизора узнать где потери тепла в здании

При выпадении снега и наличии морозов в 20 градусов, если на карнизном свесе появляются сосульки, а на самой крыше снег лежит не сплошной шапкой, а только на отдельном участке, это однозначно говорит о том, что верх дома утеплен плохо.

Снегом будет обрисовано то место, где нет утепления или где тепло выходит наружу.

хорошая крыша без теплопотерь

Если вы не можете полноценно обследовать крышу без квадрокоптера, но при этом явно видите наличие сосулек зимой (не весной в марте месяце), то для чего вам тепловизор чтобы понять, что ваша крыша дырявая.

жучки при инфильтрации тепла через стены

С крышей разобрались, а как узнать что-то про стены без спецприборов. Здесь очень хорошо определять инфильтрацию по наличию так называемых ”жучков”. Выглядят они вот так.

Эти ”жучки” образуются в местах выхода воздуха из дома на улицу. Воздух содержит водяные пары, которые при понижении температуры конденсируются и кристаллизуются.

Поэтому, если вы увидели где-то внутри дома или снаружи (под подшивкой кровли, возле окон) такие образования, вам опять таки не нужен никакой тепловизионный прибор, чтобы узнать где теряется тепло.

тепловизионное обследование многоэтажного дома

Как говорилось выше, тепловизионное обследование – это зачастую не нужная вещь в частном доме (про промышленные объекты и большие здания совсем другой разговор).

Если вы дожили до зимы, то большинство проблем легко увидите и без всякого тепловизора.

набор спецоборудования для тепловизионного обследования дома

Обследование этим прибором – вещь не для конечного потребителя, и тем более покупать его в частных целях, абсолютно не рационально. Это инструмент для профессионалов, причем для тех, которые в комплекте должны иметь еще кучу дополнительного спецоборудования.

Тепловизор безусловно хорош для поиска неисправностей и утечек теплоносителя в теплых полах.

Еще с помощью него можно проверить и найти повреждение греющего кабеля.

обследование тепловизором радиаторной батареи

Или увидеть, где в радиаторной батарее теплоноситель практически не проходит.

Но комплексное обследование своего дома, при том каким-то частным мастером – это зачастую фикция и бесполезная трата денег.

Читайте также:
Сколько весит цемент в 10 литровом ведре. Итак, сколько же цемента в ведрах различной емкости? Как разводить строительный раствор

Поклонники тепловизоров приводят доводы, что такое обследование дает информацию буквально за секунды. Но дело в том, что в 90% случаев это бесполезные данные.

осмотр дома тепловизионными приборами

Да, вы увидите места инфильтрации, но так как у нас обычно вентиляции и так недостаточно, то затыкание этих мест сделает только хуже. Прибор покажет что-то полезное, только в случае, если дом абсолютно герметичен.

как правильно обследовать дом тепловизором изнутри помещения

Причем воздухообмен с улицей (открытие-закрытие входных дверей) исключен более чем на 12 часов. Температура всех материалов должна установиться равномерной. К тому же дом должен быть пустой, без всякой мебели.

Плюс инфильтрация через мелкие щели практически не влияет на расход теплоносителя, да и все равно этот воздух вам нужен для вентиляции.

проблемы потери тепла в доме которые можно выявить тепловизором

Конечно, если ваш знакомый может оказать такую услугу бесплатно или за сущие копейки, почему нет. Может быть повезет, и найдете какой-то косяк невидимый визуально.

Например, не заложенный или прохудившийся утеплитель в стыке между кровельной и стеновой теплоизоляцией.

проверка тепловизором окон внутри дома

Или то, что половина окон продувается по откосам (плохой монтаж и старая пена), а другая половина по резинкам (требуется регулировка).

Конечно, если вы не догадываетесь о возможных проблемах или у вас даже намека нет на выше приведенные недостатки, которые буквально ”кричат” о своем присутствии (сосульки, жучки, холод из окон и т.п.), то только и остается что надеяться на специалистов.

Однако проверяйте и контролируйте их работу с учетом всего вышеизложенного.

Во всех остальных случаях заказывать дорогостоящее обследование у непонятно кого, и уж тем более покупать тепловизор только ради этого дела, конечно не стоит.

Безусловно, обследование в отдельных случаях может быть и не плохим решением, но вот заказчик в большинстве своем не понимает, зачем ему это надо и что потом с этими данными делать. Не будьте такими заказчиками.

Как проверить свой дом или квартиру с помощью тепловизора на утечки тепла: гайд и примеры термограмм

В холодное время года как никогда важным становится качественный обогрев жилого помещения. И на важное место выходит поиск и устранение утечек тепла, изоляция мостов холода и возможных огрехов в строительстве. Это один из видов энергоаудита, в котором поможет нам мобильный тепловизор. Разбираемся с основами энергоаудита и пробуем самостоятельно проверить квартиру или дом на утечки тепла.

Содержание
Для чего нужно проводить термоинспекцию жилого помещения?

Действительно, с какой целью следует проводить термоинспекцию жилого помещения? Все достаточно просто. Если тепло из нагретого жилища будет «улетать» на улицу, такая ситуация как минимум приведет к повышенному расходу энергии для обогрева (газ/электричество/горячая вода), а как максимум — к заметному снижению комнатной температуры и промерзанию стен помещения. Улучшать существующую систему необходимо в комплексе, прочищая или заменяя батареи отопления, заменяя старые окна на пластиковые со стеклопакетами, утепляя швы, стыки и углы помещения, теплоизолируя все возможные места утечек. А для этого нужно будет провести инспекцию и выявить возможные места утечек.

Что же такое мобильный тепловизор и как с его помощью искать проблемы

Современные доступные и недорогие тепловизоры для смартфонов дают возможность самостоятельно оценить ситуацию с теплоизоляцией в помещении. Существует несколько разновидностей тепловизионных камер для бытовых целей. Речь идет как автономные устройства, так и про приставки для смартфонов или планшетов. Существуют даже смартфоны с уже установленной тепловизионной камерой. Практически все доступные модели на рынке оснащены тепловизионными матрицами, с разрешением и частотой обновления, обеспечивающими приемлемое отображение для инспекции помещений. И практически все модели позволяют сохранять снимки и видео для последующего анализа.

Глубоко вникать в принципы работы тепловизионной матрицы я не буду, но остановлюсь подробнее на типовых проблемах с утеплением помещения и возможных местах утечек тепла. Для начала можно выделить распространенные утечки тепла от пластиковых окон и балконных дверей. Зачастую при установке исполнители работ торопятся и не уделяют должного внимания заполнению теплоизолирующими материалами дверные коробки и оконные рамы, допуская места, где теплый воздух беспрепятственно вырывается наружу, а в помещение поступает холодный воздух.

На термоснимках хорошо видно, что из-под подоконника выходит воздух комнатной температуры (18°С) при уличной средней температуре около 11°С. Это заметно выстужает комнату и при ветреной или морозной погоде находиться в комнате будет некомфортно. Далее подробнее рассмотрим различные варианты типичных проблем для частных и многоквартирных домов.

Термоинспекция жилого дома или коттеджа

В частном строительстве ошибки в проектировании и строительстве часто приводят к серьезным проблемам, в том числе и с отоплением. Основная утечка тепла в доме или коттедже происходит через крышу. Также в обязательном порядке смотрим утепление кладки, стен, жилых пристроек, стыков и т.д. Особое внимание — окнам и перекрытиям. Не лишним будет оценить ситуацию и изнутри помещения. На фотографии хорошо видно недостаточную термоизоляцию стен, нарушение монтажа ветро- и парозащиты под крышей.

Тепловизионная матрица позволяет получить картину распределения температур в целом. Горячие места подсвечиваются, можно выбрать контрастную цветовую схему (палитру), установить температурные границы от и до для отображения на экране. При осмотре крыши и пространства под козырьком становятся хорошо видны места утечек с нарушением теплоизоляции стыка участка стены и крыши.

Читайте также:
Снегоуборщики Honda: особенности и популярные модели
Термоинспекция многоквартирного дома

Что касается многоэтажных домов, то проблем с сохранением тепла достаточно много, как впрочем и других коммунальных проблем. Начинать анализ следует с осмотра подъезда и входной двери, как первых барьеров на пути холода. Далее нужно осмотреть наружные стены и окна. Если оценивать именно панельные дома, то большая часть утечек тепла происходит из-за нарушения изоляции швов между панелями. Также часто попадаются нарушения при установке пластиковых окон. Подтвердить утечки тепла следует и изнутри помещения — просто сравнив результаты внутреннего и уличного замеров.

Утечки в окнах, дверях, швах, стыках стен помещения

Надо понимать, что при просчетах проекта зданий (квартиры, дома, помещения) возможные утечки тепла осуществляются через несущие конструкции — так называемые «мосты холода». На снимках примеры утечек через стыки и швы стен офисного здания. Даже при исправно работающем отоплении в углу помещения всегда холодно, а сотрудники жалуются: «дует».

Обратите внимание как «светится» излучаемым теплом стык шва в панельном доме. А в квартире будут постоянно холодные (ледяные!) полы. И просто утеплить пол со стороны квартиры будет мало — нужно в обязательном порядке теплоизолировать этот самый шов. И такая ситуация в целом справедлива для остальных похожих случаев.

Проверка систем отопления

И если со стенами/окнами разобрались, то далее обращаем внимание на системы отопления. Достаточно важно проверить состояние и добиться эффективной работы радиаторов отопления. Тепловизор поможет найти место завоздушивания, засора, неправильно работающие элементы батареи.

Тепловизор для смартфона

Один из самых простых вариантов для самостоятельного энергоаудита может стать тепловизор для смартфона. Представляет собой небольшую приставку с камерой ИК-диапазона, которая подключается к порту USB смартфона. На фото модели Seek Thermal Compact PRO и базовая Seek Thermal Compact. Отличаются не только фокусирующей линзой, но и разрешением матрицы. По большому счету, любой из этих моделей будет достаточно для беглого осмотра помещения внутри или снаружи — большая часть термограмм из настоящей статьи получена именно с помощью этих моделей.

Смартфон со встроенным тепловизором

Удобным вариантом станет недорогой смартфон со встроенным тепловизором. В качестве примера приведу достаточно интересный смартфон Blackview BV6600 Pro со встроенным тепловизором FLIR и в защищенном корпусе. Именно эта модель представлена на заглавном фото.

Такой смартфон всегда будет под рукой и поможет провести осмотр помещения, а также сохранить в память фотоснимки или видеоролики. Ниже приведены примеры утечек тепла в дома или квартире: неутепленные углы и стыки стен, крыш, нарушения при установке окон и вентиляции, полученные с помощью Blackview BV6600 Pro.

Автономный тепловизор с Wi-Fi

Еще один хороший и проверенный вариант — это автономный мобильный тепловизор. На фотографии одна из самых удачных моделей — Seek Thermal Shot Pro с разрешением матрицы 320 x 240 точек. С помощью подобного устройства было обнаружено проблемное место в подъезде. Это был ввод газовой трубы без должной теплоизоляции. Из отверстия постоянно дуло, на морозе снижение температуры в подъезде могло достигать 5-10 градусов. Изоляцию восстановили, сквозить перестало, в подъезде в итоге заметно комфортнее.

Заключение и выводы

Стоит ли говорить, что обнаруженные места утечек и «мосты холода» следует тем или иным способом изолировать, снижая утечки тепла из жилого помещения. Таким образом если вы желаете провести зиму в тепле, но сомневаетесь в теплоизоляции своего помещения, то лучше не ждать и провести инспекцию с помощью тепловизора. Это можно сделать самостоятельно с мобильным тепловизором. Недорогие модели доступны для заказа как из Китая и со склада в России.

С другими тестами и обзорами гаджетов, а также подборками оборудования вы можете ознакомиться по ссылкам ниже и в моем профиле.

Как регламентируются термографические исследования

Диагностика тепловизором

Поскольку результаты термографических измерений могут стать основанием для подачи судебных исков или проведения дорогостоящей реконструкции строительных объектов, порядок их выполнения регламентирован на уровне государственных и отраслевых стандартов. Несмотря на то, что для каждого типа зданий или электроустановок могут быть сформулированы собственные алгоритмы проверок, правила проведения тепловизионного обследования в любом случае должны описывать те действия, которые необходимы для достижения требуемой точности измерений.

Необходимость в подобных методических указаниях обусловлена тем, что диагностика теплового поля, как и любой иной вид точных измерений, должна проводиться с учётом зависимости измеряемых объектов от внешних факторов, а также с применением рабочей калибровки приборов.

В некоторых случаях несоблюдение правил измерений и оформления отчёта может привести к признанию недействительными официальных документов, проверяемых в ходе инспекционных проверок МЧС и Ростехнадзора (например, энергопаспорта).

Нормативно-правовая база

Обследование электросетей

Прежде, чем приступить к рассмотрению нормативной базы, определяющей правила тепловизионных исследований, напомним, что теория теплового контроля строительных и электротехнических конструкций разработана достаточно давно, и современная версия термо-диагностики является «реинкарнацией» проверенной и хорошо зарекомендовавшей себя методики строительной диагностики.

Это означает, что всякий термографический анализ производится не ради измерений, а с целью обнаружения отклонений от утверждённых количественных и качественных соотношений в конструкции зданий или электрооборудования.

В частности, при проверке теплоизолирующих ограждений строительных конструкций руководствуются нормативами, изложенными в следующих документах:

  • СНиП 23-02-2003 «Тепловая защита зданий»;
  • МГСН 2.01-99 «Энергосбережение в зданиях».
Читайте также:
Ремонт двери стиральной машины

Обратите внимание, что в числе прочего в данных документах сформулированы требования по тепловому балансу между внутренней атмосферой и температурой стен и именно эти нормативы являются основанием для оформления претензий к строителям.

Базовые положения о применение методов неразрушающего контроля изложены в следующих правилах и стандартах:

  • ГОСТ 26254-84 «Методы определения сопротивления теплопередаче ограждающих конструкций» (в том числе и математический базис термографических исследований);
  • ГОСТ 26629-85 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций» (рассмотрены особенности контроля специальных теплоизолирующих покрытий);
  • ГОСТ 25380-82 «Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции» (сформулированы методические указания по организации термографических замеров);
  • РД-13-04-2006 «О порядке проведения теплового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах» (в том числе и о порядке проведения тепловизионного контроля на объектах повышенной опасности).

Существует более современный стандарт, в котором сформулированы основные понятия, числовые соотношения и методические указания для проведения термографических проверок: ГОСТ Р 54852-2011 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».

Квалификационный уровень специалистов, работающих с термографическим оборудованием, должен соответствовать положениям, оговоренным в ПБ 03-372-00 «Правило аттестации и основные требования к лабораториям неразрушающего контроля”.

Кроме этого, следует учитывать, что практически для всех видов специальных измерений разработаны собственные варианты руководящей документации. В частности, при разработке технологических карт для измерений в электроустановках следует руководствоваться сводом правил из РД 153.34.0-20.363-99 «Основные положения методики инфракрасной диагностики электрооборудования и ВЛ».

Если же ЭТЛ планирует оказывать услуги в области энергоаудита тепловых сетей, то при составлении отчётов следует принять во внимание рекомендации, изложенные в РД 153.34.0-20.364-00 «Методика инфракрасной диагностики тепломеханического оборудования».

Требования к организациям, специалистам и оборудованию

Показательная темограмма

Из информации, приведенной в предыдущем разделе, следует простой вывод: измерения, выполненные с нарушением рекомендуемой технологии, не имеют юридической силы, поскольку не гарантируют достоверность полученных результатов.

Ввиду чего, к квалификации специалистов и метрологическому контролю оборудования предъявляются достаточно строгие требования, требующие документального подтверждения.

Так, согласно ПБ 03-372-00 специалист, непосредственно выполняющий осмотр и тепловизионную съемку, должен иметь квалификационный уровень в области неразрушающего теплового контроля не ниже первого, что должно быть подтверждено соответствующим удостоверением.

Техник, выполняющий интерпретацию полученных данных, должен иметь квалификацию не ниже второй категории.

Не менее важна и своевременная метрологическая поверка тепловизоров и вспомогательного оборудования, так как при ошибках в калибровках прибора всего на 1-2 градуса можно получить совершенно противоположные заключения.

Важный момент: если помимо тепловизора для замеров используется вспомогательное оборудование – оно тоже должно быть поверено (контактные термометры, пирометры, гигрометры и др.).

Как правило, соответствие дат метрологических поверок проверяется при выдаче лицензии электротехнической лаборатории или другой экспертной организации, предлагающей услуги тепловизионного обследования.

В тех случаях, когда термографическая диагностика выполняется одновременно с испытаниями электрических сетей, сотрудники, выполняющие съёмку, также должны иметь удостоверение электротехнической безопасности соответствующей категории.

Порядок проведения обследования тепловизором

Конкретный алгоритм измерений зависит от особенностей проверяемого объекта, но в любом случае он должен быть построен таким образом, чтобы полученные результаты имели максимальную точность.

В связи с чем, любую локальную технологию проверки разрабатывают в соответствии с базовыми методическими рекомендациями, сформулированными в ГОСТ Р 54852-2011.

Основные зоны теплопотерь

В общем случае термографирование производят в следующей последовательности:

  1. Первичный осмотр объекта и выявлением зон с предположительно стабильными температурными показателями.
  2. Определение (или установка) контрольных точек, используемых в дальнейшем для математической интерполяции полученных данных.
  3. Измерение скорости ветра, влажности, а также внешней и внутренней температур объекта (с занесением данных в журнал).
  4. Последовательная съемка тепловизором всех участков контролируемой зоны. Если предполагается объединение снимков в панораму, каждый последующий кадр должен производиться с захватом 10% предыдущего.

Приведенная последовательность действий применяется ко всем проверяемым конструкциям (внешние, наружные, специальные зоны).

При этом, следует придерживаться следующих технологических рекомендаций:

  • измерения температуры и влажности окружающей среды выполняется до, после и в ходе измерений с интервалом в 15-30 минут (с фиксацией данных в журнале);
  • каждому кадру присваивается номер с обязательной регистрацией в журнале;
  • контактные измерения температуры в реперных точках также выполняются до, после, и в ходе измерений (тоже под запись в журнал).

Заключительный этап обследования – обработка результатов измерений на компьютере или с помощью встроенного вычислительного модуля с учётом корректирующих коэффициентов.

Условия для проведения съемок, сроки проведения

Поскольку ключевым фактором, влияющим на точность проведения тепловизионной диагностики, является контраст между тепловым фоном элементов проверяемой конструкции, замеры должны производиться при определённых погодных и эксплуатационных условиях.

Вместе с тем, существует ряд обязательных требований, которых следует придерживаться при организации термографического обследования.

Установившиеся режимы теплообмена

Та как процесс тепловизионного обследования занимает довольно продолжительное время, контрольные съёмки можно проводить только после того, как стабилизировались основные теплообменные процессы. На практике это означает, что отопительные системы в доме или квартире должны быть включены как минимум за 16 часов перед проведением замеров.

При этом, время суток должно быть выбрано таким образом, чтобы изменение внешнего температурного режима во время проведения диагностики было минимальным (оптимальным для замеров временем считаются утренние часы).

Читайте также:
Простой электрошокер своими руками

Средний срок выполнения стандартной проверки теплозащиты дома – от 1 до 5 часов.

Отдельно отметим, что крайне нежелательно проводить измерения при влажных стенах и крыше, так как испарение влаги существенно искажает реальную тепловую картину.

Требуемый уровень теплового контраста

Ещё одно обязательное условие, необходимое для получения достоверного результата при проведении тепловизионного контроля – это достаточная разница температур между наружной и внутренней воздушными средами.

Согласно приведенным выше нормативам, минимальный разброс между внутренней и внешней температурами должен быть не менее 12-15 0 C.

Но следует учитывать, что данный показатель зависит ещё и от характеристик тепловизора, поэтому точное значение перепада вычисляется по следующей формуле:

Формула для расчёта перепада температур

При какой температуре будет выполняться обследование, не столь критично, главное, чтобы был обеспечен стабильный тепловой контраст.

Оптимальным периодом для проведения термографирования является временной промежуток между концом октября и началом апреля, но в тех случаях, когда обследование необходимо выполнить летом, применяют искусственные способы создания температурной разности (наиболее используемый вариант – аэродвери).

Минимальное воздействие внешних источников тепла

Помимо перечисленных выше пунктов, в правилах тепловизионной диагностики оговаривается ещё одно требование: контролируемый объект перед проведением измерений не должен подвергаться внешнему тепловому воздействию, включая прямые и отражённые солнечные лучи.

Рекомендуемая «выдержка» перед проверкой – не менее 12 часов.

Можно ли проводить диагностику самостоятельно

Реальное и термофото

В предыдущих наших обзорах мы уже упоминали о том, что тепловизионное обследование может проводиться в двух режимах: энергетический аудит и выявление аварийных ситуаций.

В первом случае предполагается, что в ходе обследования будет проведена полная покадровая съемка контролируемых поверхностей, сопровождаемая составлением подробных термограмм и отчётов с интерпретацией полученных данных.

При этом, надо учитывать, что далеко не всегда результаты, полученные напрямую с дисплея прибора, соответствуют реальным температурам, и для приведения их «готовому» виду необходима специальная компьютерная обработка, учитывающая корректировки по результатам контактных измерений.

Очевидно, что для выполнения всех этих действий в полевых условиях необходимо не просто знание принципов работы тепловизора, а реальный практический опыт термографических исследований.

Отметим, что только такие данные могут быть основанием для оформления юридически корректных документов, поэтому результаты измерений подписываются с указанием квалификационного уровня специалиста, их выполнявшего.

Во втором случае, когда тепловизионная съёмка нужна лишь для того, чтобы быстро обнаружить аварийный узел или место протекания трубопровода, проверку можно выполнить и без составления отчётной документации (то есть, провести самостоятельный осмотр).

Но даже в этом случае необходимо знать, как правильно связать координаты термографического изображения и светового снимка объекта. В дорогих моделях тепловизоров такая привязка происходит автоматически, но в большинстве случаев приходится придерживаться специальной технологии съёмок.

Специально для таких случаев предусмотрен тариф «Аренда тепловизора с оператором», стоимость которого заметно меньше стоимости услуг с детальной проработкой отчёта.

В каком виде выдается заключение тепловизионного обследования

От правильности оформления отчётной документации напрямую зависит эффективность затрат на тепловизионное обследование. Можно привести десятки ситуаций, когда после правильно выполненных измерений предприятия получали крупные штрафы из-за неопытности сотрудника, заполнявшего отчётную документацию.

Этот факт является ещё одной из причин, по которой данные работы следует поручать только аккредитованным в соответствующих СРО измерительным лабораториям.

Точный перечень информации, которая должны быть отражена в отчёте о термографическом обследовании, приведен в приложениях А, Б и В стандарта ГОСТ Р 54852-2011.

Здесь же отметим, что в нём обязательно должны присутствовать следующие данные:

  1. Полный перечень данных по используемому оборудованию (модель, серийный номер, дата метрологической поверки).
  2. Подробное описание внешних погодных условий, зафиксированных на начало проведения измерений.
  3. Термограммы и результаты расчётов.
  4. Описание дополнительных измерений (если таковые производились).

В тех случаях, когда термографирование проводилось рамках электроизмерительных проверок в сетях передачи электроэнергии, результаты обследования подшиваются к общему отчёту электролаборатории.

Компания «Мега.ру» принимает заказы на проведение тепловизионного контроля строительных и производственных объектов, включая термографическое обследование устройств контактной сети в сетях до 1000 В и выше. Уточнить условия сотрудничества и рассчитать точную стоимость работ можно, связавшись с нами по координатам, опубликованным на странице «Контакты».

Тепловизионное обследование дома – реальные примеры и выводы

Тепловизионное обследование дома

№1. Пример тепловизионного обследования здания Минздрава

Тепловизионное обследование здания Минздрава

Тепловизионное обследование здания Минздрава

22 ноября 2017 года мы проводили тепловизионное обследование здания Минздрава России.

Мы использовали оборудование:
  • тепловизор «Testo 871»,
  • термогигрометр «Testo 622»,
  • измеритель плотности теплового потока и температуры ИТП-МГ4.03 «ПО-ТОК»,
  • термоанемометр «Testo 405».

Тепловизионное обследование от 15 000 руб.

Мы проводили обследования при таких условиях:
  • температура воздуха -1 °С , внешняя относительная влажность 83%,
  • измерения проводились при отсутствии солнечного освещения в течении 12 часов перед проведением термографирования,
  • средний тепловой напор составил 21 °С,
  • коэффициент излучения объекта контроля был более 0.7,
  • тепловой контроль проводился в отсутствии осадков, тумана при скорости ветра 1,6 мс.

Вот несколько термограмм из этого обследования.

Тепловизионное обследование здания

На термограмме видно нарушение теплоизоляционных свойств стен в районе цоколя.

Здание Мининистерства Здравохранения

Выявлено нарушение теплоизоляции стен в районе цоколя здания.

Читайте также:
Ремонт подвала от воды

Теплопотери в районе цоколя

Зафиксированы теплопотери через стены в районе цоколя, нарушена теплоизоляция ограждающих конструкций.

Окна

Теплотехнических аномалий не выявлено, стандартные теплопотери через окна.

теплопотери в здании Минздраватепловизионное обследование дома пренадлежащеого Минздраву в Москве

Зафиксированы теплопотери через примыкания стен.

Угол зданияУгол на входе

Теплопотери через примыкание стен в районе цоколя, нарушена теплоизоляция.

Район примыкания стен. Здание Минздарава РФ.

Потери тепла в районе примыкания стен.

Тепловизионное обследование зданий от 15 000 руб.

Выводы, заключение:

  • на момент проведения тепловизионного обследования здания Минздрава явно выраженных тепловых аномалий на фасаде здания не обнаружено;
  • необходимо провести работы по утеплению цоколя здания по периметру для уменьшения тепловых потерь через ограждающие конструкции;
  • углы примыкания наружных стен требую работ по дополнительной тепловой изоляции и гидроизоляции;
  • необходимо восстановить или реконструировать тепловую изоляцию на теплотрассе для снижения тепловых потерь от теплоносителя.

№2. Пример тепловизионного обследования многоквартирного дома

тепловизионное обследование многоквартирного дома

Пример: тепловизионное обследование многоквартирного дома

«30» октября 2017 года мы проводили тепловизионное обследование многоквартирного дома.

Мы проводили обследования при таких условиях:
  • температура воздуха 4 °С , внешняя относительная влажность 83%,
  • измерения проводились при отсутствии солнечного освещения в течении 12 часов перед проведением термографирования,
  • средний тепловой напор составил 16 °С,
  • коэффициент излучения объекта контроля был более 0.7,
  • тепловой контроль проводился в отсутствии осадков, тумана при скорости ветра 2 мс.
Мы использовали оборудование:
  • тепловизор «Testo 871»,
  • термогигрометр «Testo 622»,
  • измеритель плотности теплового потока и температуры ИТП-МГ4.03 «ПО-ТОК»,
  • термоанемометр «Testo 405».

Мы получили следующие результаты.

Тепловизионное обследование многоквартирного дома - окна

На термограмме не наблюдаются дефекты, но зафиксированы конструктивные мостики холода (по перекрытиям этажей).

Стена

Дефектов нет, все в порядке.

Мостики холода на перекрытиях

Обнаружили конструктивные мостики холода по перекрытиям.

Инфильтрация воздуха

Выявили инфильтрацию воздуха через уплотнения по периметру двери подъезда.

Дефектов нет

Дефектов не выявлено, кроме конструктивных мостиков холода.

Теплопотери через входную дверь

Обнаружили большие теплопотери, инфильтрация воздуха через входную дверь подъезда.

тепловизионное обследование МКД

По уплотнению двери этого подъезда зафиксировали инфильтрацию воздуха, значительный дефект.

тепловизионное обследование многоквартирного дома - пример потерь через двери

Очередная дверь подъезда имеет значительный дефект – инфильтрация воздуха.

Тепловизионное обследование многоквартирного дома

Входная наружняя дверь негерметична, нарушен или отсутствует уплотнитель.

Зафиксировали инфильтрацию наружного воздуха, большие теплопотери.

Выводы, заключение:

На момент проведения тепловизионного обследования явно выраженных тепловых аномалий на фасаде здания не обнаружено.

Тепловое поле фасадов равномерное.

Выявлены участки тепловых потерь по притворам полотен дверей. Выявлены конструктивные мостики холода.

№3. Пример. Тепловизионное обследование домов в Москве

Тепловизионное обследование дома

Пример: Тепловизионное обследование дома

18 ноября 2017 года мы проводили тепловизионное обследование дома.

Мы использовали оборудование:
  • тепловизор «Testo 871»,
  • термогигрометр «Testo 622»,
  • измеритель плотности теплового потока и температуры ИТП-МГ4.03 «ПО-ТОК»,
  • термоанемометр «Testo 405».
Мы проводили обследования при таких условиях:
  • температура воздуха 2 °С , внешняя относительная влажность 73%,
  • измерения проводились при отсутствии солнечного освещения в течении 12 часов перед проведением термографирования,
  • средний тепловой напор составил 18 °С,
  • коэффициент излучения объекта контроля был более 0.7,
  • тепловой контроль проводился в отсутствии осадков, тумана при скорости ветра 2 мс.

Это хорошие условия для проведения обследования.

Были получены такие результаты:

тепловизионное обследование дома в Москве

На термограмме не наблюдаем дефектов теплоизоляции, инфильтрации воздуха, неравномерного распределения температуры.

Хороший результат! Посмотрим дальше.

тепловизионное обследование частного дома в Москве

С этой стороны здания мы также не обнаружили дефектов.

тепловизионное обследование - дефектов нет

На термограмме не зарегистрировано утечек тепла.

Теплопотери через окна соответствуют нормам.

Фасад - утечек тепла нет

На термограмме участка фасада с большой площадью остекления дефектов (утечек тепла) нет.

Теплопотери через остекление в норме.

Дефетов не выявлено

И здесь отличный результат. Мы не зарестрировали ни одного дефекта.

Окна

На термограмме не наблюдается дефектов теплоизоляции, инфильтрации воздуха.

Выводы, заключение:

Здание построено или реконструировано в соответствии с нормами по энергосбережению.

Тепловизионное обследование не выявило проблемных участков, значительных и критических дефектов.

Отсутствие теплопотерь в доме встречается не так часто.

Рассмотрим ещё несколько примеров проведения тепловизионного обследования.

Тепловизионное обследование от 15 000 руб.

№4. Пример тепловизионного обследования частного дома.

Тепловизионное обследование частного дома

Пример: Тепловизионное обследование частного дома

« 14 » апреля 2017 года мы проводили тепловизионное обследование частного дома.

Мы проводили обследования при таких условиях:
  • температура воздуха 4 °С , внешняя относительная влажность 72%,
  • измерения проводились при отсутствии солнечного освещения в течении 12 часов перед проведением термографирования,
  • средний тепловой напор составил 16 °С,
  • коэффициент излучения объекта контроля был более 0.7,
  • тепловой контроль проводился в отсутствии осадков, тумана при скорости ветра 2 мс.
Мы использовали оборудование:
  • тепловизор «Testo 871»,
  • термогигрометр «Testo 622»,
  • измеритель плотности теплового потока и температуры ИТП-МГ4.03 «ПО-ТОК»,
  • термоанемометр «Testo 405».

Причина обращения:

Найти причину образования наледи на кровле частного дома.

Рассмотрим несколько термограмм из этого обследования.

Тепловизионное обследование частного дома

Дефектов теплоизоляции в районе кровли не обнаружили.

тепловизионное обследование жилого дома

На этом участке кровли нет дефектов теплоизоляции.

тепловизионное обследование жилого дома в Подмосковье

Кровля и мансардное окно не имеют дефектов теплоизоляции

Пример: Кровля

Термографическая съемка внутри мансарды не выявила дефектов теплоизоляции кровли частного дома.

Утечки тепла через окно

Места примыкания стен к свесу кровли не имеют дефектов теплоизоляции.

Теплопотери через окно стандартные.

Не обнаружено дефектов

Места примыкания свеса кровли к стенам не имеют дефектов теплоизоляции.

Тепловизионное обследование частного дома

Дефектов теплоизоляции в районе балкона нет.

Большая площадь остекления и стандартные теплопотери через светопрозрачные конструкции.

Выводы:

По результатам проведённого телевизионного обследования определили, что отсутствуют места с повреждением теплоизоляционных свойств кровли и стен.

В местах примыкания кровли и стен наблюдаем равномерное температурное поле – отсутствие дефектов теплоизоляции.

Значительные потери тепла зафиксированы только через оконные проемы.

Состояние теплоизоляции стен, кровли и внутренних поверхностей нормальное.

Читайте также:
Обои флизелиновые или виниловые: что лучше выбрать?

Состояние теплоизоляции кровли, стен и внутренних поверхностей не является причиной появления отложений в виде льда на крыше дома.

Оценка теплопотерь дома: как правильно проводить тепловизионное обследование

ГОСТ Р 54852-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЗДАНИЯ И СООРУЖЕНИЯ

Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций

Buildings and structures. Method of thermovision control of enclosing structures thermal insulation quality

Дата введения 2012-05-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г., N 184-ФЗ “О техническом регулировании”, а правила применения национальных стандартов Российской Федерации – ГОСТ Р 1.0-2004 “Стандартизация в Российской Федерации. Основные положения”

Сведения о стандарте

1 РАЗРАБОТАН Учреждением Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСМ)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 “Строительство”

4 В настоящем стандарте учтены основные положения европейского регионального стандарта ЕН 13187:1999* “Тепловые характеристики зданий – Качественное обнаружение тепловых неоднородностей ограждающих конструкций – Инфракрасный метод” (EN 13187:1999 “Performance thermique des – qualitative des thermiques sur les enveloppes de – infrarouge”, NEQ)

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. – Примечание изготовителя базы данных.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячно издаваемых информационных указателях “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на ограждающие конструкции жилых, общественных, промышленных и сельскохозяйственных зданий и сооружений с нормируемой температурой внутреннего воздуха помещений и устанавливает метод тепловизионного контроля качества теплозащиты одно- и многослойных конструкций (наружных стен, перекрытий, в том числе стыковых соединений) в натурных и лабораторных условиях, определения мест и размеров участков, подлежащих ремонту для восстановления требуемых теплозащитных качеств.

Требования настоящего стандарта не распространяются на части ограждающих конструкций с повышенным коэффициентом отражения теплового излучения.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 745-2003 Фольга алюминиевая для упаковки. Технические условия

ГОСТ 6416-75 Термографы метеорологические с биметаллическим чувствительным элементом. Технические условия

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия

ГОСТ 25380-82 Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции

ГОСТ 26148-84 Фотометрия. Термины и определения

ГОСТ 28243-96 Пирометры. Общие технические требования

ГОСТ 31167-2009 Здания и сооружения. Методы определения воздухопроницаемости ограждающих конструкций в натурных условиях

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (изменяющим) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 26148, а также следующие термины с соответствующими определениями:

3.1 абсолютно черное тело: Тело, которое полностью поглощает все падающее на него электромагнитное излучение.

3.2 базовый участок ограждающей конструкции: Участок ограждающей конструкции, состояние теплоизоляции которого принимают за эталон при контроле качества теплоизоляции других участков ограждающей конструкции.

3.3 величина температурной аномалии: Разница температур в наиболее холодной или горячей точке температурной аномалии и базового участка.

3.4 зеркальная поверхность: Поверхность, на которой с помощью тепловизора можно наблюдать отражение теплового излучения оператора на расстоянии более 2 м.

3.5 коэффициент излучения: Отношение мощностей собственного теплового излучения единиц поверхности реального тела и абсолютно черного тела при одинаковых температурах.

3.6 коэффициент теплоусвоения материала: Отношение амплитуды колебания теплового потока к амплитуде колебания температуры на поверхности материала при заданной частоте.

3.7 мгновенное поле зрения тепловизора: Линейный угол зрения одного элемента разложения термограммы.

3.8 минимально допустимый перепад температур: Разность температур внутреннего и наружного воздуха, при которой возможно выявление участков ограждающей конструкции с нарушенной теплоизоляцией.

3.9 модель термограммы ограждающей конструкции: Термограмма из альбома типовых термограмм или эскиз температурного поля поверхности, рассчитанного на ЭВМ по данным проекта ограждающей конструкции.

3.10 обзорная термограмма: Термограмма поверхности ограждающей конструкции или ее укрупненных элементов, получаемая для выявления участков с нарушенными теплозащитными свойствами.

3.11 относительное сопротивление теплопередаче: Показатель качества теплоизоляции, равный отношению сопротивления теплопередаче контролируемого и базового участков.

3.12 параметры, настраиваемые при тепловизионной съемке: Параметры, к которым в зависимости от модели тепловизора могут относиться коэффициент излучения, коэффициент пропускания атмосферы, температура отраженного излучения, температура окружающего воздуха, относительная влажность воздуха, удаленность точки съемки.

3.13 радиационная температура: Температура абсолютно черного тела, при которой регистрируемая сенсором(ами) тепловизора мощность излучения единицы площади поверхности данного тела равна регистрируемой мощности излучения объекта контроля.

Читайте также:
Озонаторы воздуха: что это такое и как ими пользоваться?

3.14 реперный участок: Участок поверхности с постоянной температурой на наружной или внутренней стороне ограждающей конструкции, размеры которой при выбранной дистанции съемки соответствуют формуле (2).

3.15 температурная аномалия: Область зарегистрированной термограммы с повышенной или пониженной относительно базового участка температурой.

3.16 температурная чувствительность тепловизора: Минимальная разрешаемая тепловизором разница температур.

3.17 тепловая инерция ограждающей конструкции: Величина, численно равная сумме произведений термических сопротивлений отдельных слоев ограждающей конструкции и коэффициентов теплоусвоения материала этих слоев.

3.18 тепловизионный контроль: Неразрушающий контроль, основанный на бесконтактном измерении теплового излучения и регистрации температурных полей на поверхности ограждающих конструкций.

3.19 тепловизор: Прибор или совокупность приборов, предназначенных для преобразования теплового изображения объекта в видимое.

3.20 тепловое изображение: Изображение объекта контроля, создаваемое за счет различий в радиационной температуре различных участков объекта.

3.21 термограмма: Тепловое изображение, записанное в аналоговом или цифровом виде в память тепловизора или на цифровой носитель.

3.22 термографирование: Определение и отображение распределения температуры по поверхности путем измерения радиационной температуры.

3.23 точка съемки: Место и направление размещения тепловизора либо в руках оператора, либо с применением дополнительных средств.

3.24 элемент разложения термограммы: Минимальный участок термограммы, соответствующий сигналу, измеренному одним элементом матрицы тепловизора (для матричных приборов), либо элемент разложения изображения (для приборов сканирующего типа).

4 Общие положения

4.1 Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций основан на дистанционном измерении тепловизором полей температур поверхностей ограждающих конструкций, между внутренними и наружными поверхностями которых существует перепад температур, и визуализации температурных аномалий для определения дефектов в виде областей повышенных теплопотерь, связанных с нарушением теплоизоляции, а также участков внутренних поверхностей ограждающих конструкций, температура которых в процессе эксплуатации может опускаться ниже точки росы.

4.2 Температурные поля поверхностей ограждающих конструкций получают на экране тепловизора, а также на экранах вспомогательных устройств в виде псевдоцветного или монохромного изображения изотермических поверхностей. Градации цвета или яркости на изображении соответствуют различным температурам. Кроме того, температурные поля и другая сопутствующая измерениям информация записываются в виде термограмм во встроенной памяти тепловизора и/или на внешних съемных носителях информации. Термограммы, записанные во встроенной памяти тепловизора и/или на внешних съемных носителях, могут быть визиуализированы и подвергнуты компьютерной обработке для составления отчетов и обработки (уточнения) результатов измерений.

4.3 Тепловизионному контролю подвергают наружные и/или внутренние поверхности ограждающих конструкций.

4.4 Тепловизионный контроль ограждающих конструкций рекомендуется проводить в осенне-весенний отопительный сезон.

4.5 Тепловизионный контроль ограждающих конструкций подразделяют на три вида.

4.5.1 Первый вид: осмотр объекта контроля с помощью тепловизора с сохранением или без сохранения термограмм в памяти тепловизора и/или на внешних съемных носителях памяти. Данный осмотр проводят для формирования общей характеристики объекта и выявления участков, подлежащих дальнейшему термографированию. Осмотр проводят в процессе строительства по этапам работ, при вводе объекта в эксплуатацию и в процессе его эксплуатации не реже одного раза в год. По результатам осмотра может быть составлен отчет о термографическом осмотре (см. приложение A).

4.5.2 Второй вид: обзорное термографирование наружных и/или внутренних поверхностей ограждающих конструкций с сохранением термограмм в памяти тепловизора и/или на внешних съемных носителях памяти и с обязательным составлением отчета о термографическом обследовании (см. приложение Б). Обзорное крупномасштабное термографирование наружных и/или внутренних поверхностей ограждающих конструкций может являться предварительным этапом при проведении детального термографирования с целью локализации зон проведения обследований.

4.5.3 Третий вид: детальное термографирование выделенных участков наружных и/или внутренних поверхностей ограждающих конструкций проводится с сохранением термограмм в памяти тепловизора и/или на внешних съемных носителях памяти и с обязательным составлением отчета о термографическом обследовании (см. приложение Б).

4.6 Тепловизионное обследование может включать в себя один или несколько видов работ согласно 4.5.1-4.5.3.

4.7 На основании данных осмотра объекта и/или обзорного крупномасштабного термографирования выбирают реперные участки для измерения температуры контактным методом, базовый участок, а также точки съемки для проведения обзорного и/или детального термографирования.

4.8 Результаты обзорного и детального термографирования в зависимости от поставленных задач подразделяют на качественные и количественные. Качественные результаты термографирования ограничиваются информацией, содержащейся в термограммах, полученных и обработанных тепловизором либо упрощенными методами с помощью дополнительных средств, и используются для обследований, направленных на выявление дефектов без последующего использования полученных результатов для количественных расчетов локальных относительных сопротивлений теплопередаче, коэффициента теплотехнической неоднородности и других параметров. Количественные результаты термографирования сопровождаются компьютерной обработкой снятых термограмм с целью получения распределения температур по поверхности объекта, максимально близкого к действительному. Данные результаты могут быть использованы в дальнейших расчетах.

4.9 При обзорном и детальном термографировании используются базовый и реперные участки на обследуемой поверхности ограждающей конструкции.

4.10 Для получения качественных результатов термографирования на каждой термограмме достаточно одного реперного участка. Для получения количественных результатов термографирования на каждой термограмме выбирают не менее двух реперных участков так, чтобы различия температуры на них как минимум в несколько раз превосходили точность измерения температуры контактным методом и чувствительность тепловизора.

5 Оборудование и приборы

5.1 Для контроля качества теплоизоляции ограждающих конструкций применяют тепловизоры с параметрами не ниже:

Ссылка на основную публикацию