Прогрев бетона в зимнее время проводом пнсв: технологическая карта

Прогрев бетона в зимнее время проводом пнсв: технологическая карта

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА (ТТК)

ЭЛЕКТРОПРОГРЕВ (ТЕРМОООБРАБОТКА) КОНСТРУКЦИЙ ИЗ МОНОЛИТНОГО БЕТОНА И ЖЕЛЕЗОБЕТОНА

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Типовая технологическая карта (именуемая далее по тексту ТТК) – комплексный организационно-технологический документ, разработанный на основе методов научной организации труда предназначенный для использования при разработке Проектов производства работ (ППР), Проектов организации строительства (ПОС) и другой организационно-технологической документации в строительстве.

ТТК может использоваться для правильной организации труда на строительном объекте, определения состава производственных операций, наиболее современных средств механизации и способов выполнения работ по конкретно заданной технологии.

ТТК является составной частью Проектов производства работ (далее по тексту – ППР) и используется в составе ППР согласно МДС 12-81.2007.

1.2. В настоящей ТТК приведены указания по организации и технологии производства работ по электропрогреву монолитных бетонных и железобетонных конструкций.

Определён состав производственных операций, требования к контролю качества и приемке работ, плановая трудоёмкость работ, трудовые, производственные и материальные ресурсы, мероприятия по промышленной безопасности и охране труда.

1.3. Нормативной базой для разработки технологической карты являются:

– строительные нормы и правила (СНиП, СН, СП);

– заводские инструкции и технические условия (ТУ);

– нормы и расценки на строительно-монтажные работы (ГЭСН-2001, ЕНиР, ВНиР, ТНиР);

– производственные нормы расхода материалов (НПРМ);

– местные прогрессивные нормы и расценки, нормы затрат труда, нормы расхода материально-технических ресурсов.

1.4. Цель создания ТК – описание решений по организации и технологии производства строительно-монтажных работ по электропрогреву монолитных бетонных и железобетонных конструкций с целью обеспечения высокого качества, а также:

– сокращение продолжительности строительства;

– обеспечение безопасности выполняемых работ;

– организации ритмичной работы;

– рациональное использование трудовых ресурсов и машин;

– унификация технологических решений.

1.5. На базе ТТК в составе ППР (как обязательные составляющие Проекта производства работ) разрабатываются Рабочие технологические карты (РТК) на выполнение отдельных видов электромонтажных работ (СНиП 3.01.01-85* “Организация строительного производства”) по электропрогреву монолитных бетонных и железобетонных конструкций.

Конструктивные особенности их выполнения решаются в каждом конкретном случае Рабочим проектом. Состав и степень детализации материалов, разрабатываемых в РТК, устанавливаются соответствующей подрядной строительной организацией, исходя из специфики и объема выполняемых работ.

РТК рассматриваются и утверждаются в составе ППР руководителем Генеральной подрядной строительной организации.

1.6. ТТК можно привязать к конкретному объекту и условиям строительства. Этот процесс состоит в уточнении объёмов работ, средств механизации, потребности в трудовых и материально-технических ресурсах.

Порядок привязки ТТК к местным условиям:

– рассмотрение материалов карты и выбор искомого варианта;

– проверка соответствия исходных данных (объемов работ, норм времени, марок и типов механизмов, применяемых строительных материалов, состава звена рабочих) принятому варианту;

– корректировка объемов работ в соответствии с избранным вариантом производства работ и конкретным проектным решением;

– пересчёт калькуляции, технико-экономических показателей, потребности в машинах, механизмах, инструментах и материально-технических ресурсах применительно к избранному варианту;

– оформление графической части с конкретной привязкой механизмов, оборудования и приспособлений в соответствии с их фактическими габаритами.

1.7. Типовая технологическая карта разработана на новое строительство и предназначена для инженерно-технических работников (производителей работ, мастеров) и рабочих на строительно-монтажных работах, выполняющих работы в III-й температурной зоне, с целью ознакомления (обучения) их с правилами производства работ по электропрогреву монолитных бетонных и железобетонных конструкций, с применением наиболее современных средств механизации, прогрессивных конструкций и способов выполнения работ.

Технологическая карта разработана на следующие объёмы работ:

– монолитные конструкции – 100,0 м.

II. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Технологическая карта разработана на комплекс электромонтажных работ по электропрогреву монолитных бетонных и железобетонных конструкций.

2.2. Электромонтажные работы по электропрогреву монолитных бетонных и железобетонных конструкций выполняют в зимнее время, круглосуточно, в три смены, продолжительность рабочего времени в течение смены составляет:

где 0,828 – коэффициент использования ТП по времени в течение смены (время связанное с подготовкой ТП к работе и проведение ЕТО – 15 мин перерывы связанные с организацией и технологией производственного процесса).

2.3. В состав последовательно выполняемых строительно-монтажных работ по бетонированию монолитных, железобетонных перекрытий типового этажа жилого дома входят следующие технологические операции:

– определение модуля поверхности охлаждения;

– установка струнных электродов;

2.4. Технологической картой предусмотрено выполнение работ с использованием следующего электротехнического оборудования: комплектная трансформаторная подстанция КТП ТО-80-У1 напряжением 380/55-95 В, мощностью 80 кВА наружной установки, предназначенная для электропрогрева (термообработки) бетона и грунта.

Рис.1. Комплектная трансформаторная подстанция КТП ТО-80-У1

2.5. Для электропрогрева монолитных бетонных и железобетонных конструкций в качестве основных материалов используется струнные электроды, изготовленные на строительной площадке из арматурной стали периодического профиля марки А-III, 8-12 мм, =2,5-3,5 м и стержневые электроды, изготовленные из арматурной стали периодического профиля марки А-III, 6-10 мм, до 1,0 м; электрический кабель марки КРПТ 316, 325 и 350.

Читайте также:
Постельное белье из сатина на 50 фото: практичный выбор!

2.6. Электромонтажные работы по электропрогреву монолитных бетонных и железобетонных конструкций следует выполнять, руководствуясь требованиями следующих нормативных документов:

Прогрев бетона нагревательным проводом ПНСВ

Заливка бетона зимой имеет свои сложности. Главной проблемой считается нормальное затвердевание раствора, вода в котором может замерзнуть, и он не наберет технологической прочности. Даже если этого не случится, низкая скорость высыхания состава сделает работы нерентабельными. Прогрев бетона проводом ПНСВ поможет снять этот вопрос.

Электропрогрев бетона в зимнее время – наиболее удобный и дешевый способ достигнуть нужной твердости материала. Он разрешается нормами СП 70.13330.2012, и может применяться при выполнении любых строительных работ. После отвердевания бетона, провод остается внутри конструкции, поэтому применение дешевого ПНСВ дает дополнительный экономический эффект.

Прогрев проводом ПНСВ

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

Применение кабеля ПНСВ

Характеристики провода

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.
Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до +50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

Схема подключения

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.
Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Этапы прогрева бетона

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Читайте также:
Плитка Fap Ceramiche

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Расчет длины

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Зимнее бетонирование

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.

Технологическая карта на электрообогрев нагревательными проводами монолитных бетонных конструкций

Технологическая карта на электрообогрев нагревательными проводами монолитных бетонных конструкций. М., 1985. (Госстрой СССР. Центр. науч.-исслед. и проектно-эксперим. ин-т организации, механизации и техн. помощи стр-ву. ЦНИИОМТП).

Приведены технологические решения по электрообогреву нагревательными проводами монолитных бетонных и железобетонных сооружений и их частей, возводимых в зимних условиях.

Даны рекомендации по выбору основных технологических параметров электрообогрева бетона при отрицательных температурах наружного воздуха, а также схемы раскладки проволочных электронагревателей в монолитных конструкциях.

Технологическую карту подготовили сотрудники отдела бетонных работ ЦНИИОМТП Госстроя СССР (Н.С. Мусатова, к.т.н. А.Д. Мягков, к.т.н. В.В. Шишкин) и отдела № 7 Бюро внедрения ЦНИИОМТП (Б.Ю. Губман, Б.А. Ломтев, Г.С. Петрова).

Карта предназначена для строительных и проектно-конструкторских организаций.

1 . ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 . Технологическая карта разработана на электрообогрев нагревательными проводами различных унифицированных монолитных железобетонных конструкций, возводимых в зимних условиях.

1.2 . Даны примеры электрообогрева фундаментов, ростверков, подпорных стенок и других монолитных конструкций при помощи нагревательных проводов.

1.3 . Сущность способа заключается в передаче выделяемого проводами тепла в бетон контактным путем. Провода с металлической токонесущей изолированной жилой, подключаемые в электрическую сеть, работают как нагреватели сопротивления. Нагревательные провода можно закладывать непосредственно в массив монолитной конструкции или использовать в инвентарных гибких плоских электронагревательных устройствах (ГЭП) для внешнего электрообогрева бетона (рис. 1 ).

1.4 . В состав работ, рассматриваемых картой, входят: подготовка рабочей зоны и конструкции к бетонированию и электрообогреву бетона; укладка нагревательного провода в конструкцию; бетонирование конструкции; электротермообработка бетона; контроль качества бетона.

Рис. 1 . Греющий плоский элемент (ГЭП)

2 . ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ СТРОИТЕЛЬНОГО ПРОЦЕССА

2.1 . До начала бетонирования конструкции выполняют следующие подготовительные работы:

устанавливают опалубку, арматурные сетки и каркасы; при этом грунтовое основание под конструкцию должно быть отогрето и защищено от промерзания (допускается применение инвентарной опалубки различных конструкций и типов, при эксплуатации в зимних условиях ее утепляют минераловатными матами, пенопластом, пенополиуретаном и т.п., причем коэффициент теплопередачи утеплителя должен быть не более 2 Вт/ м 2 × °С);

на ровной площадке не более чем в 25 м от возводимой монолитной конструкции устанавливают трансформаторную подстанцию типа КТП-63-ОБ;

на расстоянии до 1,5 м от конструкции устанавливают софиты – инвентарные секции трехфазных шинопроводов (рис. 2);

Читайте также:
Сауна у себя дома – это реально

Рис. 2 . Инвентарная секция шинопроводов (крайняя секция):

1 – разъем; 2 – деревянная стойка; 3 – болты; 4 – токопроводы (полоса 3 ´ 40 мм)

устанавливают ограждение рабочей зоны и проводят сигнализацию и освещение;

около трансформаторной подстанции и распределительных шкафов устанавливают деревянные настилы, покрытые резиновыми ковриками, монтируют противопожарный щит с углекислотными огнетушителями, развешивают в рабочей зоне таблички по технике безопасности;

подключают к питающей сети трансформаторную подстанцию и опробывают ее на холостом ходу, а также проверяют работу временного освещения и систем автоматики температурного регулирования;

обеспечивают рабочее звено необходимым инструментом, индивидуальными средствами защиты, проводят инструктаж;

очищают от мусора, снега и наледи опалубку и арматуру возводимой конструкции.

2.2 . После выполнения подготовительных работ приступают к бетонированию с электротермической обработкой бетона.

Работы выполняют в определенной последовательности.

Перед бетонированием размещают в конструкции нагревательные провода: в железобетонных конструкциях провод навивают на арматурные каркасы и сетки, в бетонных – на шаблоны, укладываемые по мере бетонирования, причем длину проволочных нагревателей в зависимости от рабочего напряжения принимают по номограмме (рис. 3).

Рис. 3 . Номограмма для определения длины проволочных нагревателей

Нагревательный провод навивают в конструкции без сильного натяжения (с усилием до 30 – 50 Н). В углах с режущими кромками под проводом устанавливают дополнительную изоляцию из рубероида или битуминизированной бумаги. Крепят провода к арматуре вязальной проволокой, причем во избежание обгорания изоляции, замыкания на массу в густоармированных конструкциях и перегорания концов нагревательного провода из бетона наружу устраивают выводы из монтажного провода сечением 2 ,5 – 4 мм (рис. 4 ). Выводы располагают с одной стороны конструкции, а узлы соединений тщательно изолируют.

Опалубку монтируют частично не установленную, чтобы иметь возможность уложить нагревательные провода в конструкцию.

Нагревательные провода подключают к инвентарным секциям шинопроводов, подсоединенных с помощью кабеля к трансформаторной подстанции.

После этого начинают бетонировать конструкцию, соблюдая при этом меры, предотвращающие повреждение изоляции и обрывы нагревательных проводов, в частности, не допускаются резкие удары и быстрое опускание рабочей части вибратора в опалубку, а также использование для уплотнения бетонной смеси штыкового и другого инвентаря с режущими кромками и т.п.

Горизонтальные поверхности готового изделия укрывают гидроизоляционными материалами (пленкой, битуминизированной бумагой и т.п.), а при большой площади открытых поверхностей укладывают также гибкие плоские электронагреватели (ГЭПы) и утеплитель. Для утепления обогреваемого бетона рекомендуется применять инвентарные гибкие теплоизоляционные покрытия (ТИГП), представляющие собой влагонепроницаемый чехол из прорезиненной ткани, внутри которого заключен утепляющий холстопрошивной стекломатериал марки ХПС.

Рис. 4 . Выводы нагревательных проводов из бетона:

1 – нагревательные провода; 2 – монтажные провода; 3 – бетон

Для регулирования температуры обогрева бетона в специальной скважине устанавливают выносной термодатчик системы автоматики и подают напряжение на проволочные электронагреватели. Продолжительность обогрева определяют в зависимости от температуры и требуемой конечной прочности бетона по графикам на рис. 5.

Рис. 5 . Кривые набора прочности бетоном при различных температурах его выдерживания:

а, в – для бетона М200 на портландцементе активностью 400 – 500;

б, г – для бетона М200 на шлакопортландцементе активностью 300 – 400

2.3 . Работы по укладке нагревательного провода в конструкции и электрообогреву монолитного бетона выполняет звено из четырех человек:

электромонтер 5 разряда – 1,

электромонтер 3 разряда – 1,

бетонщик 3 разряда – 1,

арматурщик 3 разряда – 1.

2.4 . При укладке бетонной смеси горизонтальными слоями в массивные сооружения и железобетонные конструкции значительной высоты (стенки, колонны и пр.) отдельные проволочные нагреватели следует размещать в зоне этих слоев. После перекрытия бетонной смесью очередного слоя нагреватели, размещенные в нем, подключают в электрическую сеть (толщина укладываемого слоя не должна превышать 50 см).

2.5 . Калькуляция затрат труда составлена на электрообогрев нагревательными проводами конструкции с модулем Мп = 10 м -1 площадью 70 м 2 . Толщина конструкции 200 мм; шаг закладки проводов 100 мм; обогрев двусторонний (провода и ГЭП); погонная нагрузка 25 Вт/м. Продолжительность термообработки при максимальной температуре изотермического выдерживания 60 – 70 °С принята из условия достижения бетоном к концу обогрева 50 % проектной прочности.

При изменении массивности конструкции (модуля) и шага установки проволочных электронагревателей следует пользоваться поправочными коэффициентами, увеличивающими или уменьшающими затраты труда и стоимость конструкции.

Калькуляция затрат труда на электрообогрев нагревательными проводами конструкций площадью 70 м 2 модулем Мп = 10 м -1

Норма времени на единицу измерения,

Затраты труда на весь объем работ,

Расценки на единицу измерения, руб.-коп.

Стоимость затрат труда на весь объем работ, руб.-коп.

Состав звена и используемые механизмы

ЕНиР, 1979 г., § 23-2-28, табл. 2, п. 1, 2

Установка с помощью автокрана трансформаторной подстанции в зоне бетонирования

ЕНиР, 1979 г., § 1-4

Переноска и установка на место инвентарных секций трехфазных шинопроводов при массе секции 10 кг

ЕНиР, 1979 г., § 23-7-26, п. 3в

Читайте также:
Ротбанд шпаклевка: описание и применение шпатлевки от компании Кнауф

Установка защитного сетчатого ограждения на болтах при помощи отдельной рамы более 2 м 2

ЕНиР, 1979 г., § 23-2-18, п. 1а

Крепление плакатов по технике безопасности

ЕНиР, 1979 г., § 23-4-6, п. 2а, прим. 3

Навивка на арматурный каркас нагревательного провода сечением до 4 мм 2 – с креплением в отдельных точках

ЕНиР, 1980 г., § 4-1-38, п. 1

Установка гибких плоских элементов (ГЭП) и теплоизоляционных покрытий для обогрева открытых бетонных поверхностей

ЕНиР, 1979 г., § 23-7-34, п. Б

Подсоединение к сети трансформаторной подстанции и секций шинопроводов кабелями сечением до 16 мм 2

ЕНиР, 1979 г., § 23-4-15, п. 4

Проверка состояния изоляции кабелей и проводов мегомметром до и после прокладки

ЕНиР, 1979 г., § 23-7-34, табл. 1, п. а

Присоединение нагревательных проводов к зажимам секций шинопроводов

Дежурство электромонтера в период электрообработки бетона

То же, на 1 м 3 бетона

Поправочные коэффициенты для монолитных конструкций различной массивности

Модуль поверхности монолитной конструкции Мп, м -1

Толщина монолитной конструкции, мм

Поправочные коэффициенты при различном шаге проволочных электронагревателей

Шаг (расстояние между смежными витками) проволочных нагревателей, мм

2.6 . Контроль качества

Перед бетонированием конструкции необходимо проверить наличие утепляющих материалов, проволочных нагревателей и ГЭП в объеме, предусмотренном технологической картой. Следует проконтролировать работоспособность и отсутствие механических повреждений изоляции проводов, ГЭП, коммутационной сети, трансформаторов и другого электрооборудования и систем автоматики температурного контроля; наличие токоизмерительных клещей, вольтметра, диэлектрических ковриков, перчаток и т.д.

До начала укладки бетонной смеси должно быть проверено качество очистки от снега и наледи основания, опалубки и арматуры.

После бетонирования требуется проконтролировать надежность укрытия горизонтальных поверхностей конструкции гидроизоляционным материалом и толщину утеплителя.

Не реже двух раз в смену полагается измерять температуру бетонной смеси в кузовах автомобилей-самосвалов и в бункерах на глубине 5 – 10 см, а после укладки каждого слоя в конструкцию – на глубине 5 см.

Контроль температуры обогреваемого бетона следует производить ртутными термометрами. Число точек измерения температуры устанавливается из расчета не менее одной точки на 3 м 3 бетона. Температуру бетона в процессе обогрева измеряют каждый час.

Не реже двух раз за смену, а в первые три часа прогрева – три раза следует измерять ток и напряжение в питающей цепи. Отсутствие искрения в местах электрических соединений проверяют визуальным осмотром.

Контроль прочности бетона может осуществляться по фактическому температурному режиму наименее нагретых участков. После распалубливания определяют прочность прогретого бетона, имеющего положительную температуру (с помощью молотка НИИмосстроя, молотка Кашкарова, ультразвуковым способом, либо высверливанием кернов и испытанием).

Общие требования к контролю качества бетона должны соответствовать СНиПу Ш-15-76.

2.7 . Техника безопасности

При эксплуатации ГЭП (греющего элемента), нагревательных проводов и силового питающего электрооборудования помимо общих правил безопасного производства работ согласно СНиПу Ш-4-80 «Техника безопасности в строительстве» следует руководствоваться «Правилами технической эксплуатации и безопасности электроустановок промышленных предприятий».

Электробезопасность на строительной площадке, участках производства работ и рабочих местах необходимо обеспечивать в соответствии с требованиями ГОСТа 12.1.013-78. Лица, занятые на строительно-монтажных работах, должны быть обучены безопасным способам ведения работ, а также уметь оказать первую доврачебную помощь при электротравме.

В строительно-монтажной организации следует иметь инженерно-технического работника, ответственного за безопасную эксплуатацию электрохозяйства организации, имеющего квалификационную группу по технике безопасности не ниже IV .

Ответственность за безопасное производство конкретных строительно-монтажных работ с использованием электроустановок возлагается на инженерно-технических работников, руководящих производством этих работ.

При устройстве электрических сетей на строительной площадке необходимо предусматривать возможность отключения всех электроустановок в пределах отдельных объектов и участков производства работ.

Работы, связанные с присоединением (отсоединением) проводов, должны выполнять специалисты по электротехнике, имеющие соответствующую квалификационную группу по технике безопасности.

В течение всего периода эксплуатации электроустановок на строительных площадках должны быть установлены знаки безопасности по ГОСТУ 12.4.026-76.

Технический персонал, проводящий электрообогрев бетона, должен пройти обучение и проверку знаний квалификационной комиссией по технике безопасности с получением соответствующих удостоверений. Дежурные электромонтеры должны иметь квалификацию не ниже III группы.

Рабочих, занятых на электрообогреве бетона, снабжают резиновыми сапогами или диэлектрическими галошами, а электромонтеров, кроме того, резиновыми перчатками. Подключение нагревательных проводов, замеры температуры техническими термометрами производят при отключенном напряжении.

Зона, где производится электрообогрев бетона, должна быть ограждена; на видном месте следует поместить предупредительные плакаты, правила по технике безопасности, противопожарные средства; в ночное время зона должна быть хорошо освещена, для чего на ограждении устанавливают красные лампочки, автоматически загорающиеся при подаче напряжения в линии обогрева.

Хождение людей, размещение посторонних предметов на поверхности греющих элементов, находящихся под напряжением, запрещается.

Доступ посторонних лиц в зону обогрева запрещается.

Все металлические нетоковедущие части электрооборудования и арматуру следует надежно заземлить, присоединив к ним нулевой провод (жилу) питающего кабеля. При использовании защитного контура заземления перед включением напряжения необходимо проверить сопротивление контура, которое должно быть не более 4 Ом.

Читайте также:
Облицовка дома из газобетона клинкерной плиткой

Около трансформаторов, рубильников и распределительных щитов устанавливают настилы, покрытые резиновыми ковриками.

Проверку сопротивления изоляции проводов с помощью мегомметра производит персонал, квалификационная группа по технике безопасности которого не ниже III . Концы проводов, которые могут оказаться под напряжением, необходимо изолировать или оградить. Участок электрообогрева бетона должен постоянно находиться под надзором дежурного электрика.

перемещать ГЭП волоком за кабельные отводы;

укладывать ГЭП на неподготовленную поверхность, имеющую штыри или режущие кромки, что может повредить целостность диэлектрической изоляции проволочных нагревателей;

укладывать ГЭП с нахлестом один на другой, а также на поверхности, имеющие впадины или ямы, нарушающие теплоотдачу и вы зывающие местные перегревы;

подключать ГЭП и нагревательные провода в сеть с напряжением, превышающим рабочее для конкретных объектов;

подключать в электросеть находящиеся на воздухе нагревательные провода, частично или полностью не забетонированные в конструкции или не зарытые в грунт;

подключать под напряжение ГЭП и нагревательные провода с механическими повреждениями изоляции, а также ненадежно выполненными коммутационными соединениями;

включать нагреватели в сеть с напряжением свыше 220 В.

Допускается проводить измерение температуры вручную термометрами и бетонировать монолитные конструкции, в том числе с послойной укладкой бетонной смеси, при не отключенных ГЭП и нагревательных проводах от сети напряжением не более 60 В при соблюдении следующих требований:

в зоне действия глубинного вибратора не имеется нагревательных проводов и отводов, находящихся под напряжением;

квалификационная группа персонала не ниже II ;

персонал выполняет работы в резиновой диэлектрической обуви и рукавицах;

работы выполняются под наблюдением электрика.

3 . ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ (на 1 м 3 бетона)

При двухстороннем обогреве нагревательными проводами монолитных конструкций толщиной, мм

Типовая технологическая карта на воздение монолитных конструкций в зимних условиях

Настоящая технологическая карта содержит практические рекомендации по возведению монолитных железобетонных конструкций в зимний период.

Зимним периодом производства работ называется время производства работ с максимальной среднесуточной температурой воздуха ниже +5 0 С и минимальной суточной температуре ниже 0 0 С;

Технологическая карта предназначается для персонала строительной организации, занятого на возведении данного объекта.

В технологической карте даны рекомендации по организации и технологии выполнения работ по возведению монолитных железобетонных конструкций период производства работ при отрицательных температурах воздуха с применением:

Приведены указания по технике безопасности и контролю качества работ, приведена потребность в механизмах с целью ускорения производства работ, снижению затрат труда, совершенствования организации и повышения качества работ.

Карта предназначена для производителей работ, мастеров и бригадиров, а также работников технического надзора заказчика и инженерно-технических работников строительных и проектно-технологических организаций, связанных с производством и контролем качества бетонных работ.

Технологическая карта выполнена в соответствии с требованиями СНиП 3.03.01-87 «Несущие и ограждающие конструкции», СНиП 12-03-2001 «Техника безопасности в строительстве» Ч.1 «Общие требования» и СНиП 12-04-2002 «Техника безопасности в строительстве» Ч.2 «Строительное производство», норм по промышленной безопасности и ППБ – 01 – 93 «Правила пожарной безопасности в Российской Федерации».

2. УСЛОВИЯ ПОДГОТОВКИ ПРОЦЕССА

– места производства работ освободить от неиспользуемого инвентаря, приспособлений, строительного материала;

– произвести проверку, подготовку и подачу к месту производства работ необходимого оборудования для электропрогрева конструкции;

3. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ СТРОИТЕЛЬНОГО ПРОЦЕССА

В период производства работ при отрицательных температурах воздуха (максимальной среднесуточной температуре воздуха ниже +5 0 С и минимальной суточной температуре ниже 0 0 С) руководствоваться следующими правилами:

1. Подготовка основания, подача, укладка, уплотнение бетонной смеси в зимних условиях производится в соответствии с правилами производства этих работ в теплый период.

2. Автобетоносмесители и бункера должны быть утеплены и оборудованы утеплённой крышкой, а при длительном пребывании смеси – подогреваться горячим воздухом, электропечами.

3. Температура и состояние основания конструкции, в которую укладывается бетонная смесь, а также способ укладки должны исключать возможность замерзания смеси в зоне контакта с основанием для чего необходимо подогреть основание перед бетонированием или использовать предварительно разогретую бетонную смесь.

4. Укладка бетонной смеси должна, по возможности, исключать промежуточную перегрузку, перевалку и потерю тепла смеси.

5. Перерывы в перекачивании бетонной смеси в связи с неисправностями или перебоями в подаче смеси в приемный бункер не должны превышать 5-8 мин для неутепленных бетоноводов и 30 мин – для утепленнях;

6. Прогрев бетоновода перед началом перекачивания смеси, очистку приемного бункера, бетононасоса и трубопровода по окончании перекачивания следует производить горячей водой. После очистки воду из труб необходимо полностью удалить;

7. Чтобы обеспечить быстрое твердение бетона, рекомендуется использовать бетон на одну марку выше, чем заложено в проекте.

8. Продолжительность вибрирования укладываемой бетонной смеси должна быть увеличена не менее чем на 25% по сравнению с летними условиями;

9. Неопалубленные поверхности конструкций укрыть п/э пленкой, затем утеплёнными брезентовыми пологами (пенопластом, опилками, этафомом или другим утеплителем) непосредственно после окончания бетонирования.

Читайте также:
Самодельные снегоходы: инструкция по изготовлению своими руками снегоката из мотоблока и бензопилы

10. Выпуски арматуры забетонированных конструкций ф24мм и более должны быть утеплены на высоту (длину) не менее чем 0,5м этафомом или мешками с сыпучим утеплителем (опилки и др.).

11. В зависимости от вида конструкции и данных о прогнозируемых климатических условиях производится выбор термообработки бетона:

[TABLE_NAME]Требования к производству работ при отрицательных температурах воздуха[/TABLE_NAME]

ПараметрВеличина параметраКонтроль (метод, объем, вид регистрации)
1. Прочность бетона монолитных и сборно-монолитных конструкций к моменту замерзания:

для бетона без противоморозных добавок:
– конструкций, эксплуатирующихся внутри зданий, фундаментов под оборудование, не подвергающихся динамическим воздействиям, подземных конструкций

– конструкций, подвергающихс я атмосферным воздействиям в процессе эксплуатации, дл я класса:
В7,5-В10
В12,5-В25
В30 и выше

– конструкций, подвергающихся по окончании выдерживания переменному замораживанию и оттаиванию в водонасыщенном состоянии или расположенных в зоне сезонного оттаивания вечномерзлых грунтов при условии введения в бетон воздухововлекающих или газообразующих ПАВ

– в преднапряженных конструкциях

– для бетона с противоморозными добавками

2. Загружение конструкций расчетной нагрузкой допуска ется после достижения бетоном прочности

3. Температура воды и бетонной смеси на выходе из смесителя, приготовленной:

– на портландцементе, шлакопорт-ландцементе, пуццолановом портландцемент е марок ниже М600

– на быстротвердеющем портландцементе и портландцементе марки М600 и выше

– на глиноземистом портландцементе

4. Температура бетонной смеси, улож енной в опалубку, к началу выдерживания или термообработки:

– при методе термоса

– с противоморозными добавками

– при тепловой обработке

5. Температура в процессе выдерживания и тепловой обработки для бетона на:

6. Скорость подъема температуры при теп ловой обработке бетона:
дл я конструкций с модулем поверхности:
– до 4
– от 5 до 10
– св. 10
– дл я стыков

7. Скорость остывания бетона по окончании теп ловой обработки для конструкций с модулем поверхности:
– до 4

8. Разность те мператур наружных слоев бетона и воздуха при распалубке с коэффициентом армирования до 1 %, до 3 % и более 3 % должна быть соответственно для конструкций с модулем поверхности:

Не менее, % проектной прочности:

К моменту охлаждения бетона до температуры, на которую рассчитано количество добавок, не менее 20 % проектной прочности

Не менее 100 % проектной

Воды не болем 70 0 С, смеси не более 35 0 С

Воды не более 60 0 С, смеси не болем 30 0 С

Воды не болем 40 0 С, смеси не болем 25 0 С

Устанавливается расчетом, но не ниже 5 0 С

Не менее чем на 5 0 С выше температуры замерзания раствора затворения
Не ниже 0 0 С

Зачем нужна технологическая карта прогрева бетона

Большая часть территории России — регионы с ярко выраженными временами года. Есть зима с отрицательными температурами, теплое лето и межсезонье.

При осуществлении частной застройки строители планируют бетонные работы на начало осени, но в крупном строительстве допускать простои в работах длиной по полгода нерентабельно. Могут быть и другие причины бетонирования при неподходящих температурах:

  1. Работы на слабых грунтах, которые возможны только зимой.
  2. Сезонное снижение стоимости материалов и работ.
  3. Возможность без проблем подвозить материалы по замерзшим дорогам.

Поэтому разработаны меры по прогреву бетона.

Зачем необходим прогрев бетона в зимнее время

В СП 70.13330 указано, что производство работ по бетонированию при среднесуточных температурах наружного воздуха ниже +5° С или при минимальной суточной температуре воздуха ниже 0° С считается зимним бетонированием.

Почему особо выделяются эти температуры?

Основной компонент бетона — цемент. Его также называют вяжущим компонентом.

Цемент является веществом водного твердения

Цемент — это вяжущее водного твердения. Это означает, что для получения твердого и прочного бетонного камня необходимо, чтобы компоненты цемента вступили в химические реакции с водой, так называемые реакции гидратации.

Со стороны кажется, что цемент просто смешали с водой и заполнителями и высушили, но это не так. При реакции составляющих цемента, таких, как алит, белит, трехкальциевый алюминат и четырехкальциевый алюмоферрит, образуются новые соединения кристаллической структуры.

Процессы гидратации требуют времени; аллит, ферритная и алюминатная фазы вступают в реакцию быстро, белит реагирует медленнее. В общей сложности необходимо 28 суток, чтобы бетон набрал расчетную прочность.

Важно!

Различают также критическую прочность бетона. Это прочность, по достижении которой бетону уже не страшны неблагоприятные условия окружающей среды; обычно это 30—50% от проектной прочности.

Оптимальными условиями отвердевания бетона являются:

  1. температура наружного воздуха 18—20° С;
  2. высокая влажность воздуха.

Что происходит, если температура воздуха опускается ниже?

С понижением температуры процессы химических реакций все более замедляются.

Набор прочности при разных температурах

Впоследствии, если бетон согреть, он наберет прочность, но она будет ниже ожидаемой.

Если температура воздуха опускается до 0° С и ниже, вода которая не успела прореагировать с компонентами цемента, замерзнет. При замерзании она расширится и приведет к образованию пустот и трещин в бетоне, что негативно отразится на прочности готового изделия. Образование ледяной пленки вокруг арматуры будет способствовать ее отслаиванию.

При замерзании вода расширяется и приводит к образованию пустот и трещик в бетоне, что негативно отразится на прочности готового изделия

Поскольку количество воды в бетонной смеси рассчитывается заранее, составляющим цемента не хватит воды для реакции, таким образом, гидратация пройдет не полностью, и это снизит прочность бетона.

Вот почему при зимнем бетонировании следует принимать определенные меры, обеспечивающие правильное протекание реакций гидратации.

Эти меры делятся на три вида:

  1. добавление особых компонентов в бетонный раствор;
  2. сохранение тепла;
  3. прогрев бетона.

У каждого из этих мероприятий есть свои плюсы и минусы. Решение принимается исходя из конкретной ситуации.

Существуют определенные стандарты на проведение любых прогревающих мероприятий, которые позволяют провести их наиболее эффективно и экономически целесообразно. Они отражены в технологических картах.

Применение специальных добавок для бетонных растворов.

Противоморозные добавки увеличивают скорость реакций и одновременно снижают температуру застывания воды в смеси, благодаря чему бетон отвердевает и при пониженных температурах.

Добавки-ускорители твердения способствуют быстрому набору критической прочности, после чего бетону уже не страшен холод.

Самый простой вариант противоморозных добавок — хлористые соли, но у их применения много ограничений, так как они совместимы не с любым видом портландцемента и работают только до температуры –10°С, кроме того, не рекомендованы к применению в армированных конструкциях, поскольку могут вызвать коррозию арматуры.

Другое дело — специальные добавки, например, CemFrio и HotIce от CEMMIX.

У этих добавок много преимуществ:

  1. низкие дозировки;
  2. простая процедура добавления;
  3. эффективная работа до температуры –20° С без прогревающих мероприятий;
  4. дополнительное пластифицирующее действие, позволяющее получать смеси повышенной удобоукладываемости;
  5. предотвращение расслаивания смеси;
  6. хорошая совместимость с любыми видами цементов и с арматурой;
  7. экономия цемента и воды;
  8. увеличение прочности готового изделия.

Сохранение тепла

При протекании реакций гидратации в бетонной смеси выделяется тепло. Если залитая конструкция имеет большой размер и достаточную толщину, тепла выделяется достаточно для того, чтобы не дать бетону замерзнуть. Нужно только сохранить его.

Метод термоса

С этой целью применяют метод термоса:

  1. Бетон замешивают из прогретых материалов. Цемент прогревать нельзя во избежание «заваривания», а заполнители, арматуру и опалубку прогревают горячим воздухом, воду подогревают до температуры 70° С.
  2. Применяют утепленную опалубку.
  3. После укладки бетонной смеси ее температура должна быть не ниже +10° С.
  4. Заливку укрывают теплоизолирующими материалами. Иногда используют специальные прогревающие маты.
  5. Периферические части конструкций могут дополнительно прогреваться электродами.
  6. Дополнительно применяют противоморозные добавки для бетона.

Метод термоса эффективен для крупных конструкций, но его недостаточно, если у заливки большая площадь охлаждения, либо температуры слишком низкие (ниже –10° С).

Прогрев бетона

Есть несколько способов прогрева бетона:

  1. тепляки;
  2. электродный прогрев;
  3. инфракрасный прогрев;
  4. индукционный прогрев;
  5. термоматы;
  6. прогрев бетона с помощью ПНСВ.
Тепляки

Тепляки — это своеобразные «шатры», которые возводят над бетонной заливкой. Внутри устанавливают тепловые пушки, которые поддерживают температуру на нужном уровне. По достижении конструкцией критической прочности шатры можно демонтировать.

Устройство тепляка

Электродный прогрев

Внутри опалубки закрепляют электроды, благодаря чему через бетонный раствор можно пропускать ток и таким образом греть бетон.

Как устроен электронный обогрев

Технологическая карта на электродный прогрев конструкций из монолитного бетона содержит организационные и технические решения по электродному прогреву бетона с целью ускорения работ и повышения качества конструкций, которые изготавливаются в холодный сезон.

Эти решения разработаны в соответствии с требованиями СНиП. Подробнее можно ознакомиться с ними в СП 70.13330.2012 «Несущие и ограждающие конструкции» п. 5.11 «Производство бетонных работ при отрицательных температурах».

  1. область применения электродного прогрева (сквозного, периферийного, арматурного) со схемами и указаниями о подготовке конструкций;
  2. допустимость применения противоморозных добавок, их вид и количество;
  3. область применения гидротеплоизоляции;
  4. методы и график выполнения работ;
  5. калькуляцию трудозатрат;
  6. параметры прогрева;
  7. необходимые материально-технические ресурсы;
  8. технику безопасности;
  9. требования к качеству и приемке работ;
  10. технико-экономические показатели.

Технологическая карта позволяет правильно и своевременно произвести все необходимые работы по электродному прогреву бетонных конструкций в зимнее время.

Инфракрасный прогрев

Бетон прогревают инфракрасным излучением.

Индукционный прогрев

Разогревает арматуру, от нее прогревается и бетон.

Термоматы

На поверхности заливки раскладываются обогреватели в виде матов. Они равномерно прогревают бетон.

Термоматы обеспечивают более расномерный прогрев, чем электроды

Прогрев бетона с помощью ПНСВ (провода нагревательного со стальной жилой и изоляцией из полиэтилена или поливинилхлоридного пластиката)

Провод ПНВС расшифровывается следующим образом:

  1. П — провод;
  2. Н — нагревательный;
  3. С — материал провода (сталь);
  4. В — материал изоляции (винил, который правильнее называть поливинилхлоридом).

Провод погружается в бетон; не реже двух раз за смену проверяют напряжение в цепи.

Технологическая карта на электрообогрев нагревательными проводами монолитных конструкций содержит указания по электрообогреву конструкций с помощью ПНСВ. В ней можно найти сведения, касающиеся области применения метода, организации и технологии выполнения работ, требований по приемке.

Важно!

При выборе любого метода прогрева дополнительное применение противоморозных добавок будет целесообразным. Все методы прогрева — дорогостоящие мероприятия, поэтому, чем быстрее их можно будет прекратить, тем больше средств будет сэкономлено. Добавки-ускорители твердения и противоморозные добавки позволяют бетону быстрее достичь критической прочности, после чего можно отменить прогревающие мероприятия.

При выборе любого метода прогрева целесообразно дополнительное применение противоморозных добавок

Какова продолжительность прогрева бетона

Бетон прогревается до тех пор, пока не достигнет критической прочности (30—50% от проектной). Обычно это происходит на 4—6-й день.

Прочность бетона определяют по фактическому температурному режиму при помощи графиков.

Графики твердения бетона

Для более точного определения сроков используют лабораторные исследования, для которых изготавливают отливки-образцы и позволяют им набирать прочность в таких же условиях, как и основная конструкция.

Применение противоморозных добавок при зимних бетонных работах гарантирует получение качественных бетонных конструкций даже в условиях отрицательных температур. Совмещение применения противоморозных добавок с методом термоса или прогревом бетона не только гарантирует набор прочности, но и сокращает продолжительность термообработки, а значит, позволяет сэкономить электроэнергию и повысить оборачиваемость дорогостоящего оборудования и опалубки. Грамотное применение прогревающих мероприятий и противоморозных добавок в соответствии с технологической картой позволяет получать зимний бетон высокого качества.

Прогрев (электропрогрев) бетона в зимнее время проводом пнсв: технологическая карта

Требования СНиП 3-03-01-87 устанавливают нормативы по прогреву бетона в зимнее время, который проводится при условии, что показатели суточной минимальной температуры воздуха составляют менее 0°С. Технологический прогрев бетона в зимнее время необходим для недопущения замораживания жидкого бетонного раствора и предотвращения появления льда в конструкции и вокруг арматурных стержней.

Схема расположения греющего кабеля в бетоне

Вода в растворе, как элемент реакции гидратации, в твердом состоянии не способна активировать и начинать ускорять затвердевание бетона. Скорее наоборот – лед начинает разрушать материал, так как увеличивает внутреннее давление в конструкции. При повышении температуры процесс гидратации продолжается, но качество бетонного элемента и его долговечность теряются. Поэтому были разработаны методы прогрева бетона, основы которых описаны ниже. Все способы прогрева бетона в зимнее время постоянно и активно эксплуатируются, но какой из них будет наиболее эффективен для конкретного строительного объекта, нужно выяснять на месте.

Прогрев ИФ излучением

Эта технология прогрева бетона основана на действии направленного инфракрасного излучения. То есть, подогреваемый материал обрабатывается именно в том месте, на которое направлены лучи. Оборудование устанавливается в месте, где будет осуществляться нагрев, опалубка при этом не мешает. Можно обогревать и саму поверхность бетона, а мощность излучения регулируется изменением расстояния между инфракрасной установкой и прогреваемым объектом. На практике инфракрасный прогрев бетона применяется на небольших объектах.

График воздействия инфракрасного излучения

Читайте также: Как сделать полимерный бетон своими руками — технология изготовления идеальной поверхности

Инфракрасный подогрев бетона – это высокоэффективная технология, оборудование просто в использовании, энергетические затраты небольшие. Также из достоинств следует отметить мобильность оборудования.

Недостатки – дороговизна оборудования, а также то, что одной установкой невозможно прогреть бетон зимой, если объект большой или объемный. То есть, может потребоваться несколько установок. Также при работе излучающего оборудования в осенний период влага слишком быстро испаряется, что отрицательно сказывается на качестве и надежности объекта. С этим явлением можно бороться, что вызывает дополнительные финансовые и временные затраты. Самый доступный и экономичный вариант — полиэтиленовая пленка.



Провод ПНСВ в строительстве

Технологический прогрев бетона проводом ПНСВ несложен. Перед заливкой раствора в опалубку или форму туда по рассчитанной заранее схеме укладывается греющий кабель ПНСВ. На схему от понижающего трансформатора подается напряжение питания, вследствие чего бетонная смесь равномерно и постоянно прогревается.

Такая схема прогрева бетона имеет свои преимущества: это не слишком высокий расход электроэнергии и низкая себестоимость способа – расходы идет только на провод пнсв и трансформатор. Например, схема подключения с трансформатором мощностью 80 кВт может прогреть площадь до 90 м3.

Схема подключения провода ПНСВ

Недостаток — длительная и трудозатратная подготовка к прогреву поверхности: необходимо правильно уложить (на нужной глубине) и подключить кабель (пример показан на схеме).

Как ухаживать за бетоном после заливки в разное время года?

Вода является важной составляющей бетонной смеси, которая участвует в химической реакции при затвердении стяжки. Поэтому уход за бетоном после заливки направлен на удержание влаги или постоянное увлажнение поверхности. Внешняя среда определяет методы поддержания процесса твердения материала. Следовательно, ухаживать за бетоном после заливки зимой и летом нужно не одинаково. При этом учитывается температура и степень увлажнения воздуха.

Прогрев электродами

Что значит прогрев бетона электродами? Провод ПНСВ заменяется проволочными или арматурными электродами Ø 8-12 мм. Такой прогрев бетона в зимнее время электродами подойдет только для заливки вертикальных или объемных объектов, так как электроды для прогрева бетона втыкаются в раствор вертикально, и на них так же, как и на схему из провода ПНСВ, подается напряжение от понижающего трансформатора. Расстояние между электродами — 0,6-1 м.

Схема подключения прогрева бетона электродами

Преимущества: простота монтажа. Недостатки: высокое энергопотребление и дороговизна схемы, так как все электроды остаются в конструкции.

Предварительный этап ухода

Мероприятия по уходу за бетонным раствором практически начинают сразу после его заливки и отделки поверхности. Работы продолжают на протяжении всего периода набора прочности материалом.

Так как по проекту этот период составляет 28 суток, то и уход за бетоном в процессе твердения должен протекать в течение этого времени. Сначала необходимо обеспечить свежему раствору надежную защиту от природных явлений. Как правило, основной этап мероприятий подразумевает использование пленкообразующих материалов.

Читайте также: Надежные методы гидроизоляции, или чем обработать газобетонные блоки снаружи от влаги?

В некоторых случаях необходимо провести предварительный этап, который выполняют с применением влажной мешковины, герметичных пленок и других материалов. Предварительный этап проводят в случаях, если:

  • температура воздуха выше 25° C и стоит сухая, жаркая погода;
  • использование пленкообразующего материала невозможно в ближайшее время;
  • основной этап не подразумевает использование защитных материалов или температура воздуха ниже +5° C;
  • идут дожди или снег.

После окончания предварительного этапа сразу переходят к основным мероприятиям по защите бетона.

Греющая опалубка (термос)

Метод греющей опалубки — это обогрев бетона специальными нагревательными элементами. Расчеты при таком обогреве показывают, что количество тепла в растворе должно быть не меньше количества тепловых потерь при остывании конструкции за все время, которое нужно для получения окончательной твердости бетона.

Схема греющей опалубки

Нагревательный элемент — электрический пленочный. Преимущества этого способа — возможность прогрева одновременно нескольких площадей или одной большой поверхности, низкое энергопотребление и мобильность. Недостаток греющей опалубки — высокая стоимость конструкции.

Индукционный прогрев

Такой электропрогрев бетона в зимний период основан на работе простой индукционной катушки. Метод индукции для прогрева используется в конструкциях с замкнутым контуром, где длина объекта больше размера его сечения. Индукционный прогрев должен проводиться с подключением понижающего трансформатора на 12-36 В.

Схема индуктора

Витки индуктора выкладываются заранее по шаблону, затем в проделанные в растворе пазы укладывается кабель, и заливается бетонная смесь. После подключения устройства температура бетона должна контролироваться, и по достижении максимального значения индуктор выключается. Если этого недостаточно, то дальнейший способ электропрогрева — метод термоса. Также можно переключить индуктор в импульсный режим.

Преимущества такого метода: равномерный прогрев всей конструкции, экономия на арматуре и электродах, низкое энергопотребление (расход электроэнергии на 1 м³ — до 150 кВт/ч).

Недостатки: маленькая площадь прогрева одним устройством. При увеличении размеров индуктора увеличивается потребление электроэнергии.

Использование присадок при морозе

Сегодня очень распространено использование противоморозных добавок и особых химических ускорителей твердения бетона. Чаще всего в качестве этих добавок выступают нитрит натрия, хлористые соли, карбонат кальция и другие. Добавки существенно понижают температуру замерзания воды, активизируют гидратацию цемента (таким образом повышается температура застывания бетона).

Благодаря введению в состав смеси добавок можно избежать необходимости прогрева. Некоторые добавки способны повысить стойкость бетона к морозу настолько, что вопрос о том, можно ли заливать бетон при минусе, не стоит вообще: гидратация проходит даже при окружающей температуре -20 градусов.

Но, несмотря на все преимущества, присадки обладают и некоторыми недостатками.

О чем нужно помнить, вводя в бетон присадки:

  • Они пагубно влияют на арматуру – может начаться процесс коррозии, поэтому актуально вводить добавки лишь в неармированный бетон.
  • Добавки позволяют бетону набрать прочность, равную максимум 30% от проектной, а потом при оттаивании смеси (при плюсовой температуре) процесс набора прочности продолжается. В связи с этим, по СНиП, добавки нельзя вводить в бетон, работающий в условиях динамических нагрузок (молоты, вибростанки и т.д.).

Основные виды противоморозных добавок:

  1. Сульфаты – активно выделяют тепло, сопровождая процесс гидратации. Прочно связываются с труднорастворимыми соединениями, для снижения температуры замерзания смеси их использовать нельзя.
  2. Антифриз – уменьшает температуру кристаллизации жидкости, увеличивает скорость схватывания раствора, на скорость формирования структур не влияет.
  3. Ускорители – повышают растворимость силикатных компонентов цемента, они реагируют с продуктами гидратации, создают основные и двойные соли, которые понижают температуру замерзания жидкости в растворе.

Наиболее распространенные противоморозные добавки:

  • Карбонат кальция (поташ) – кристаллическое вещество, противоморозный компонент, который ускоряет схватывание и затвердевание. Понижает прочность бетонного монолита на 20-30%, поэтому его обычно сочетают с сульфидно-дрожжевой бражкой (тетраборатом натрия) в концентрации максимум 30%.
  • Тетраборат натрия (сульфатно-дрожжевая бражка) – смесь солей кальция, натрия, аммония либо лигносульфоновых кислот. Добавка используется в виде примеси к поташу, не дает бетону терять прочность.
  • Нитрит натрия – кристаллический порошок, ядовитое пожароопасное вещество, применяется при возведении многоэтажных зданий, легко растворяется, не разрушает арматуру, повышает скорость застывания в 1.5 раза.
  • Формиат кальция или натрия – используется с пластификаторами в объеме не более 2-6% от массы раствора. Добавляется в процессе замеса.
  • Аммиачная вода – раствор аммиака в концентрации 10-12%, не провоцирует корродирования металла, не дает высолов.

Прогрев термоматами

Способ, как прогреть бетон термоэлектроматами, хорош тем, что сам прибор работает автономно, и его работу не нужно контролировать. Тероматы потребляют очень мало электроэнергии – меньше, чем при методе прогрева проводом или индуктором, а результат лучше, так как при равномерном обогреве раствора нет локальных зон перегрева, образование которых может привести к появлению микротрещин в конструкции.

Схема термоэлектромата

Преимущества обогрева бетонного раствора термоэлектроматами — простота применения устройств, также легко подключаемый термомат – это многоразовое оборудование, которое может прослужить до 12 месяцев при активной постоянной работе. Следующее достоинство — высокое качество результатов вследствие большой глубины прогрева: за одну рабочую смену бетон достигает 70-80 % своей нормативной марочной прочности.

Недостаток – термомат дорого стоит, вследствие этого на рынок выбрасывается много поддельного некачественного оборудования.

Уход за бетоном – факторы, влияющие на прочность бетона. Особенности ухода в летний и зимний период

Как известно, бетон является одним из самых прочных и долговечных материалов, чем и обусловлена его широкая популярность, как в сфере промышленного строительства, так и среди индивидуальных застройщиков. И если профессиональные специалисты знают все особенности технологии, то при возведении частных домов часто допускаются ошибки. Люди не знают, что уход за бетоном после заливки поздней осенью отличается от подобных мероприятий в летний и тем более зимний период, и в данном обзоре мы рассмотрим, как правильно ухаживать за материалом.

После окончания бетонных работ предстоит целый комплекс специальных мероприятий для обеспечения высокой прочности материала

Тепловой шатер

Этот способ известен давно, так как является самым первым из всех существующих методом прогрева бетона в зимнее время. Состоит он в том, что над бетонной конструкцией обустраивается каркас из любого материала, например, из деревянных брусков или металлических труб, и этот каркас обтягивается брезентом или другим рулонным материалом. Каркас можно сделать силами одного рабочего.

Схема теплового шатра

Внутри получившегося шатра устанавливается любое обогревательное устройство, например, газовая пушка. Это может быть также электрическая или дизельная пушка, и даже примитивный костер, который и будет обогревать объем сооруженного шатра.

Преимущества этого способа очевидны – дешевизна, эффективность, минимальные энергозатраты. Из недостатков – только один: таким способом можно прогреть небольшой объем бетона.

Расчет прогрева бетона

Чтобы рассчитать длину провода ПНСВ для одной секции, а также требуемое количество таких секций для определенной бетонной конструкции, учитываются технические характеристики самого провода и рабочее напряжение понижающего трансформатора. Например, при напряжении на трансформаторе 220В длина одной секции провода ПНСВ сечением 1,2 мм будет равна 110 метров. При уменьшении напряжения происходит пропорциональное сокращение длины отрезка кабеля в секции.

Если взять средний расход провода 50-60 м/м³ для одной обогревательной секции, то излучаемое тепло может прогреть бетонную массу до 80°С.

Схема размещения электродов в бетоне

Чтобы начать расчет эмпирической зависимости среднего значения температуры бетона при остывании от площади поверхности, необходимо учитывать следующие факторы и расчеты:

  1. Среднегодовой прогноз погоды на зимний период в регионе за несколько лет. Также берется в расчет прогнозируемое значение среднего температурного показателя воздуха за текущий зимний период.
  2. Рассчитывается модуль рабочей прогреваемой поверхности, и, исходя из этих расчетов, определяется соответствующая термосная выдержка раствора.
  3. По установленной формуле рассчитывается средняя температура конструкции за время ее охлаждения.
  4. Требуется информация о температуре доставляемой готовой бетонной смеси и ее экзотермических характеристиках. Эти данные можно узнать у завода-изготовителя.
  5. Согласно установленным формулам определяются тепловые потери при транспортировке смеси и ее разгрузке.
  6. Также необходимо определить температуру раствора с начала его укладки с учетом отдачи тепла на прогрев опалубки и арматуры.
  7. Опираясь на нормативные требования прочности бетона, рассчитывают время охлаждения раствора.

Такой способ расчетов работает при прогнозировании времени застывания бетона, учета тепловых потерь при заливке смеси, и излучения тепла с рабочей поверхности, но такие расчеты являются приблизительными.

Дополнительные средства защиты

Чтобы увеличить прочность бетонного покрытия на его поверхность распыляют различные защитные смеси. Они бывают белыми, черными и бесцветными.

Черные хорошо защищают от ветра и прямого солнца, но его поверхность наоборот увеличивает поглощение тепла и перегревает бетон. Битумная черная мастика действует еще хуже, она испаряет большое количество влаги во время ветра. Белые добавки, как раз за счет цвета, снижают теплопоглощение, а бесцветные не влияют на внешний вид бетона. Современные технологии позволили получить средство, создающее на поверхности прозрачную пленку. Такое покрытие можно встретить на полу в больших гипермаркетах. Оно предполагает улучшить стойкость бетона при средних температурах и влажности. Но даже при использовании таких добавок не следует забывать о необходимости регулярного увлажнения покрытия.

Ссылка на основную публикацию