Переменный ток и его параметры: интенсивность колебания зарядов в электрической сети, способы измерения

Урок 8. Переменный электрический ток

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. – М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

– мгновенное значение силы тока;

m– амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени – мгновенное значение (помечают строчными буквами – і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Читайте также:
Синтетические ковры: описание с фото, отзывы, плюсы и минусы

Um – амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Напишем закон Ома для переменного тока:

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

Период, частота, амплитуда и фаза переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Период переменного тока

Рисунок 1. Период и амплитуда синусоидального колебания. Период – время одного колебания; Аплитуда – его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Читайте также:
Разновидности угловых кухонных шкафов, правила их выбора

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2 .

Радиан

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2 ). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Фаза переменного тока

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Частотные характеристики и параметры переменного тока

Переменный ток

Направленное движение заряжённых частиц под действием электрической движущей силы (ЭДС) называют электротоком, он бывает переменным и постоянным. В последнем случае перемещение нуклонов происходит во времени стабильно, а в первом — периодически обращает направление и величину. Один из основных параметров переменного тока — частота. Зависит характеристика от периодичности колебаний электронов, может измеряться несколькими способами и приборами.

Читайте также:
Применение кляймеров для монтажа вагонки, основные достоинства

Переменный электрический ток

В английском языке этому термину соответствует выражение alternating current — аббревиатура AC, в энерготехнике как буквенное обозначение используют знак тильда (~). Переменный ток изменяется в периоде по синусоиде. Источниками служат генераторы, вырабатывающие ЭДС посредством электромагнитной индукции. Характеризуется АС следующими параметрами:

Переменный ток и его параметры

  • напряжение сети U в вольтах;
  • сила тока I=Q/Δt, [A] — количество зарядов, прошедших через поперечник проводника в единицу времени;
  • период Т — отрезок времени полного цикла изменений;
  • частота f — количество колебаний в течение секунды: f =1/Т, [Гц] в отечественных сетях стандарт 50 герц;
  • плотность тока j=I/S, [A/мм2] — векторная величина, где S площадь сечения проводника, направление j совпадает с курсом движения электронов;
  • фаза — состояние АС, может быть одно- и многофазным;
  • амплитуда I max — высота синусоиды, максимальная величина мгновенно достигаемого за период значения тока.

В энергетике преимущественно используются трёхфазные сети: 3 отдельных электроцепи с одинаковыми напряжением и частотой при сдвиге φ=120°. От стабильности колебательных движений нуклонов в системе зависит устойчивость и надёжность работы всей энергосети.

Период пульсаций и частота

Физическая сущность переменного тока заключается в перемещении электронов в проводнике сначала в одном направлении, затем в другую сторону. Полный цикл движений туда и обратно совершается за определённый период, определяемый по частоте колебаний: Т=1/ f.

Переменный и постоянный ток

Интенсивность циклов

Для условий электросетей России показатель f =50 Гц, а время одной пульсации составляет Т=1/50=0,02 секунды. Обратная связь двух параметров позволяет определить частоту ~ тока по длительности сигнала: f =1/0,02=50 Гц.

Один герц означает 1 колебание за секунду. Чем быстрее изменяется электродвижущая сила, тем скорее обращается радиус-вектор и сокращается период. Соответственно, при форсировании оборотов возрастает частота: величины Т и f обратно пропорциональны, чем больше одна, тем меньше вторая. Значения характеристики f изменяются в широких пределах, что предопределяет использование расширенной терминологии:

Количество нулей после единицыПриставка к размерности герц
3 (тысяча)Кило (кГц)
6 (миллион)Мега (мГц)
9 (миллиард)Гига (ГГц)

В зависимости от величины частота переменного тока подразделяется на следующие подгруппы:

Переменный ток формула

  • промышленные: 16―25 Гц на железнодорожных сетях некоторых стран, 25 и 75 Гц в схемах блокировки рельсовых цепей, в автономных системах авиационной и военной энергетики — 400 Гц, на некоторых производственных и сельскохозяйственных установках 200―400 Гц;
  • звуковые находятся в интервале 20―20000 Гц (20 кГц), в передающих антеннах — до 1,5 ГГц;
  • технические: автоматика — используется диапазон от 1 кГц до 1 ГГц, металлургия и машиностроение: плавка, сварка и термообработка металлов;
  • радиолокационные станции спутниковой связи, спецсистемы ГЛОНАСС, GPS — до 40 ГГц и выше.

Токи высокой частоты (ТВЧ) начинаются с уровня десятков кГц, когда значимо проявляются излучения электромагнитных волн и скин-эффект: заряд, перемещающийся в проводнике, распределяется не по сечению, а в поверхностном слое.

Для выработки ТВЧ используют энергомашинные генераторы и колебательные контуры. В последнем случае устройство представляет собой цепь с включением в состав ёмкости и индуктивности.

Опасность разночастотных зарядов

Эквивалентные по воздействию на организм человека напряжения переменного и постоянного тока, равны соответственно 42 В и 120 В. Неравенство опасности исчезает при достижении ЭДС 500 В, а при больших значениях опаснее становится константный. Проявления неблагоприятного действия последнего — термическое и электролитическое, а переменного — преимущественно выражается в сокращении сосудов, мышц, голосовых связок. При этом определяющее значение на опасность оказывает частота тока:

Переменный ток параметры

  • 40―60 Гц — наибольшая угроза поражения, возможность фибрилляции сердца; дальнейшее повышение интенсивности колебаний зарядов приводит к снижению риска, но вероятность гибельности сохраняется в пределах всего диапазона промышленных частот — до 500 Гц;
  • свыше 10 кГц начинаются ТВЧ — они безопасны до уровня 1 мГц относительно внутренних поражений, что обусловлено скин-эффектом, но вызывают ожог и угроза от них не меньше, чем от постоянных или переменных предшествующей группы;
  • токи высокой частоты сопровождаются электромагнитными излучениями — с этой стороны существует возможность негативного воздействия на живые организмы.

На относительной безопасности ТВЧ основано их применение в медицине для физиотерапевтических процедур. Тяжесть поражения электротоком зависит не только от физических параметров заряда, но и от состояния организма человека.

Измерительные приборы

Для определения интенсивности колебаний используют осциллограф, на котором можно увидеть частоту и форму сигнала. Существуют также специальные приборы — частотомеры. В них применяют следующие способы определения параметра:

Читайте также:
Необычные салаты на праздничный стол: пошаговые рецепты с фото

Магнитоэлектрический амперметр

  • перезаряд конденсатора — среднее значение силы тока пропорционально соотносится с его интенсивностью и измеряется магнитоэлектрическим амперметром со шкалой в герцах;
  • дискретный счёт — фиксирование импульсов нужной частоты за определённый период, получают данные достаточной точности: погрешность в пределах 2%, этого хороший показатель для бытового применения прибора;
  • резонансный метод основан на одноимённом электрическом явлении, возникающем в цепи с настраиваемыми элементами; частота — больше 50 Гц, определяется по шкале регулировочного механизма.

Ещё один известный способ применяется в осциллографах, основан на смешивании и сравнении эталонного параметра с измеряемой частотой. Вследствие наложения возникают биения, а при выравнивании на экране устанавливается определённая фигура. Рассчитывают искомую характеристику по зафиксированному графику посредством математических формул.

Список параметров напряжения и силы электрического тока

1. Рогачев Н.М. Курс физики. Учебное пособие// С.-Петербург: Издательство «Лань», 2010г.- 448с. 1000 экз.

2. Пронин В.П. Практикум по физике : уч. пособия / В.П. Пронин.- 2-е изд. Пронин В.П. – краткий курс физики. Саратов. СГАУ. 2007 г., 200с.

Электрический ток — упорядоченное движение заряженных частиц.

Условия существования электрического тока:

1. Наличие свободных заряженных частиц в проводнике.

2. Электрическое поле, под действием которого заряженные частицы будут двигаться упорядоченно.

За положительное направление электрического тока принимается направление движения положительно заряженных частиц.

Проводники делятся на проводники первого и второго рода.

К проводникам первого рода относятся все металлы и их сплавы, носителем электрического заряда в проводнике первого рода являются свободные электроны.

К проводникам второго рода относятся электролиты. Растворы и расплавы веществ, которые проводят электрический ток (щелочи, кислоты, соли, воду). Носителями зарядов в проводниках второго рода являются ионы.

Сила тока. Силой тока называется количество заряженных частиц, проходящих через поперечное сечение проводника за единицу времени.

Напряжение – разность потенциалов на концах проводника.

Читайте также: Умная розетка — безопасность дома и экономия электричества, как выбрать лучшую модель?

Электрическое сопротивление — способность проводника препятствовать прохождению в нем электрического тока.

Сопротивление зависит от длины проводника, от площади поперечного сечения проводника (рис.40), и от рода проводника.

Удельное сопротивление указывает на род проводника.

Также сопротивление проводника зависит от температуры проводника. В проводниках первого рода с увеличением температуры сопротивление увеличивается, так как увеличивается число столкновений электронов, движущихся в потоке с узлами кристаллической решетки. А в проводниках второго рода наоборот: с увеличением температуры сопротивление уменьшается, так как увеличивается количество заряженных частиц и уменьшается вязкость жидкости.

a- температурный коэффициент

R0- сопротивление данного проводника при 00С

Плотность тока.

Отношение силы тока к площади поперечного сечения проводника.

Литература и документация

Литература

  • Справочник по радиоэлектронным устройствам
    : В 2-х т.; Под ред. Д. П. Линде — М.: Энергия, 1978
  • Шульц Ю. Электроизмерительная техника: 1000 понятий для практиков: Справочник: Пер. с нем. М.:Энергоатомиздат, 1989

Нормативно-техническая документация

  • ГОСТ 16465-70 Сигналы радиотехнические измерительные. Термины и определения (недоступная ссылка)
  • ГОСТ 23875-88 Качество электрической энергии. Термины и определения
  • ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения

Период пульсаций и частота

Физическая сущность переменного тока заключается в перемещении электронов в проводнике сначала в одном направлении, затем в другую сторону. Полный цикл движений туда и обратно совершается за определённый период, определяемый по частоте колебаний: Т=1/ f.

Переменный и постоянный ток

Интенсивность циклов

Для условий электросетей России показатель f =50 Гц, а время одной пульсации составляет Т=1/50=0,02 секунды. Обратная связь двух параметров позволяет определить частоту ~ тока по длительности сигнала: f =1/0,02=50 Гц.

Один герц означает 1 колебание за секунду. Чем быстрее изменяется электродвижущая сила, тем скорее обращается радиус-вектор и сокращается период. Соответственно, при форсировании оборотов возрастает частота: величины Т и f обратно пропорциональны, чем больше одна, тем меньше вторая. Значения характеристики f изменяются в широких пределах, что предопределяет использование расширенной терминологии:

Читайте также:
Растворитель Р-12: характеристики состава
Количество нулей после единицыПриставка к размерности герц
3 (тысяча)Кило (кГц)
6 (миллион)Мега (мГц)
9 (миллиард)Гига (ГГц)

В зависимости от величины частота переменного тока подразделяется на следующие подгруппы:

  • промышленные: 16―25 Гц на железнодорожных сетях некоторых стран, 25 и 75 Гц в схемах блокировки рельсовых цепей, в автономных системах авиационной и военной энергетики — 400 Гц, на некоторых производственных и сельскохозяйственных установках 200―400 Гц;
  • звуковые находятся в интервале 20―20000 Гц (20 кГц), в передающих антеннах — до 1,5 ГГц;
  • технические: автоматика — используется диапазон от 1 кГц до 1 ГГц, металлургия и машиностроение: плавка, сварка и термообработка металлов;
  • радиолокационные станции спутниковой связи, спецсистемы ГЛОНАСС, GPS — до 40 ГГц и выше.

Токи высокой частоты (ТВЧ) начинаются с уровня десятков кГц, когда значимо проявляются излучения электромагнитных волн и скин-эффект: заряд, перемещающийся в проводнике, распределяется не по сечению, а в поверхностном слое.

Для выработки ТВЧ используют энергомашинные генераторы и колебательные контуры. В последнем случае устройство представляет собой цепь с включением в состав ёмкости и индуктивности.

Опасность разночастотных зарядов

Эквивалентные по воздействию на организм человека напряжения переменного и постоянного тока, равны соответственно 42 В и 120 В. Неравенство опасности исчезает при достижении ЭДС 500 В, а при больших значениях опаснее становится константный. Проявления неблагоприятного действия последнего — термическое и электролитическое, а переменного — преимущественно выражается в сокращении сосудов, мышц, голосовых связок. При этом определяющее значение на опасность оказывает частота тока:

  • 40―60 Гц — наибольшая угроза поражения, возможность фибрилляции сердца; дальнейшее повышение интенсивности колебаний зарядов приводит к снижению риска, но вероятность гибельности сохраняется в пределах всего диапазона промышленных частот — до 500 Гц;
  • свыше 10 кГц начинаются ТВЧ — они безопасны до уровня 1 мГц относительно внутренних поражений, что обусловлено скин-эффектом, но вызывают ожог и угроза от них не меньше, чем от постоянных или переменных предшествующей группы;
  • токи высокой частоты сопровождаются электромагнитными излучениями — с этой стороны существует возможность негативного воздействия на живые организмы.

На относительной безопасности ТВЧ основано их применение в медицине для физиотерапевтических процедур. Тяжесть поражения электротоком зависит не только от физических параметров заряда, но и от состояния организма человека.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

Рис. 3. Электрический диполь

Рис. 4. Вихревые поля

Класс токоограничения

Этот параметр говорит о быстродействии автомата. Значение параметра приводится в рамке, под значением Icn:

Класс токоограничения автомата говорит о быстродействии электромагнитной защиты

Цифра в рамке говорит о части периода напряжения, за которое электромагнитная защита сработает при КЗ. Если указана цифра “3”, значит, при КЗ автомат успеет отработать за 1/3 периода, или за время около 6 мс.

Впрочем, в наши дни технология продвинулась настолько, что все производители легко выполняют данное условие, и автоматический выключатель любого бренда имеет класс токоограничения 3.

Цветовая индикация изоляции проводов

Это важная функция изоляции. Все ТПЖ заключены в оболочку различных цветов, так что не приходится гадать, какая жила выходит с разных сторон кабеля. Кроме того, цветовая маркировка несет информационную нагрузку. В разных видах кабеля жилы имеют различную окраску. Однако, как правило, в трехжильном они белого, желтого и красного цветов.

Читайте также:
Резка плитки болгаркой - работоспособность инструмента

Стандартная цветовая маркировка трехжильного провода

Белый принимается за фазу, красный — ноль, желтый или желто-зеленый — провод заземления. При другой гамме устойчивым цветом привязки считается желто-зеленая ТПЖ, а другие цвета, как правило, распределяются по вкусу монтирующего цепь. Главное при этом — запомнить или записать, какой цвет к чему относится, чтобы не ошибиться впоследствии.

Стандартная цветовая маркировка пятижильного кабеля

Внутри самого кабеля, под внешней оболочкой, изолированные жилы посыпаются мелом для улучшения их скольжения и предотвращения слипания ТПЖ.

Эти статьи Вам тоже могут быть интересны:
  1. Прокладка провода
  2. Способы соединения проводов
  3. Выбор кабеля для электропроводки
  4. Из чего сделаны кабели, провода и шнуры

ОБЛАСТЬ ИСПОЛЬЗОВАНИЯ И ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

Трансформаторы тока используется для преобразования параметров электроэнергии первичных цепей высокого напряжения. Они выполняют две основные функции:

1. Приведение характеристик тока к величинам, которые могут использовать различные электроприборы: счетчики, измерительные устройства, защитные реле.

2. Физическая отделение (изоляция) исполнительных устройств, подключенных измерительным и защитным цепям, от высоковольтных кабелей линий электропередач.

ПОДКЛЮЧЕНИЕ СЧЕТЧИКА ЧЕРЕЗ ТРАНСФОРМАТОР ТОКА

Так как подсоединять измерительные устройства к первичной цепи питания прямым включением нельзя используются ТТ, с соответствующим коэффициентом трансформации. К примеру, для выполнения учета потребления электроэнергии на линии с нагрузкой в 400А необходимо использовать трансформатор тока с рабочими показателями не менее 400/5.

Подсоединение трансформаторов осуществляется на подстанции потребителя. Первичная катушка подключается к силовым контактам фаз (А и С) так называемая «схема неполной звезды». К контактам вторичной обмотки подключается электросчетчик и амперметр. К примеру, модели САЗУ-ИТ и Э378 в щитовом исполнении.

Измерительные приборы

Для определения интенсивности колебаний используют осциллограф, на котором можно увидеть частоту и форму сигнала. Существуют также специальные приборы — частотомеры. В них применяют следующие способы определения параметра:

  • перезаряд конденсатора — среднее значение силы тока пропорционально соотносится с его интенсивностью и измеряется магнитоэлектрическим амперметром со шкалой в герцах;
  • дискретный счёт — фиксирование импульсов нужной частоты за определённый период, получают данные достаточной точности: погрешность в пределах 2%, этого хороший показатель для бытового применения прибора;
  • резонансный метод основан на одноимённом электрическом явлении, возникающем в цепи с настраиваемыми элементами; частота — больше 50 Гц, определяется по шкале регулировочного механизма.

Ещё один известный способ применяется в осциллографах, основан на смешивании и сравнении эталонного параметра с измеряемой частотой. Вследствие наложения возникают биения, а при выравнивании на экране устанавливается определённая фигура. Рассчитывают искомую характеристику по зафиксированному графику посредством математических формул.

§ 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения.

Электрический ток — упорядоченное движение заряженных частиц.

Условия существования электрического тока:

1. Наличие свободных заряженных частиц в проводнике.

2. Электрическое поле, под действием которого заряженные частицы будут двигаться упорядоченно.

За положительное направление электрического тока принимается направление движения положительно заряженных частиц.

Проводники делятся на проводники первого и второго рода.

К проводникам первого рода относятся все металлы и их сплавы, носителем электрического заряда в проводнике первого рода являются свободные электроны.

К проводникам второго рода относятся электролиты. Растворы и расплавы веществ, которые проводят электрический ток (щелочи, кислоты, соли, воду). Носителями зарядов в проводниках второго рода являются ионы.

Сила тока.Силой тока называется количество заряженных частиц, проходящих через поперечное сечение проводника за единицу времени.

Напряжение – разность потенциалов на концах проводника.

Плотность тока.

Отношение силы тока к площади поперечного сечения проводника.

Билет 8 — Закон Ома для участка цепи.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению

Билет 9 — Закон Ома для полной цепи.

Cила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи

, где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Билет 10 — Основные понятия, относящиеся к электрической цепи: проводимость, сопротивление, удельное сопротивление, удельная проводимость.

Читайте также:
Правила выбора и принцип работы электрического рубанка

Электри́ческая проводи́мость — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению

Формула: g = I / U или g = 1 / R

В сименсах (См). [См]=[1/Ом]

g — проводимость проводника, ом;

R — сопротивление проводника, Ом;

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Формула: R = U / I;

R — сопротивление проводника, Ом;

Удельное сопротивление вещества —физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока.

В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Расчётная формула .. ρ = R*S / l

R — сопротивление проводника, Ом;

ρ — удельное сопротивление проводника; Ом·м

l — длина проводника, м;

S — сечение проводника, мм2.

Удельная проводимость(удельная электропроводность) — это мера способности вещества проводить электрический ток. Ом−1·м−1

ρ — Удельное сопротивление вещества

γ — Удельная проводимость

Период пульсаций и частота

Физическая сущность переменного тока заключается в перемещении электронов в проводнике сначала в одном направлении, затем в другую сторону. Полный цикл движений туда и обратно совершается за определённый период, определяемый по частоте колебаний: Т=1/ f.

Переменный и постоянный ток

Интенсивность циклов

Для условий электросетей России показатель f =50 Гц, а время одной пульсации составляет Т=1/50=0,02 секунды. Обратная связь двух параметров позволяет определить частоту ~ тока по длительности сигнала: f =1/0,02=50 Гц.

Один герц означает 1 колебание за секунду. Чем быстрее изменяется электродвижущая сила, тем скорее обращается радиус-вектор и сокращается период. Соответственно, при форсировании оборотов возрастает частота: величины Т и f обратно пропорциональны, чем больше одна, тем меньше вторая. Значения характеристики f изменяются в широких пределах, что предопределяет использование расширенной терминологии:

Количество нулей после единицыПриставка к размерности герц
3 (тысяча)Кило (кГц)
6 (миллион)Мега (мГц)
9 (миллиард)Гига (ГГц)

В зависимости от величины частота переменного тока подразделяется на следующие подгруппы:

  • промышленные: 16―25 Гц на железнодорожных сетях некоторых стран, 25 и 75 Гц в схемах блокировки рельсовых цепей, в автономных системах авиационной и военной энергетики — 400 Гц, на некоторых производственных и сельскохозяйственных установках 200―400 Гц;
  • звуковые находятся в интервале 20―20000 Гц (20 кГц), в передающих антеннах — до 1,5 ГГц;
  • технические: автоматика — используется диапазон от 1 кГц до 1 ГГц, металлургия и машиностроение: плавка, сварка и термообработка металлов;
  • радиолокационные станции спутниковой связи, спецсистемы ГЛОНАСС, GPS — до 40 ГГц и выше.

Токи высокой частоты (ТВЧ) начинаются с уровня десятков кГц, когда значимо проявляются излучения электромагнитных волн и скин-эффект: заряд, перемещающийся в проводнике, распределяется не по сечению, а в поверхностном слое.

Для выработки ТВЧ используют энергомашинные генераторы и колебательные контуры. В последнем случае устройство представляет собой цепь с включением в состав ёмкости и индуктивности.

Опасность разночастотных зарядов

Эквивалентные по воздействию на организм человека напряжения переменного и постоянного тока, равны соответственно 42 В и 120 В. Неравенство опасности исчезает при достижении ЭДС 500 В, а при больших значениях опаснее становится константный. Проявления неблагоприятного действия последнего — термическое и электролитическое, а переменного — преимущественно выражается в сокращении сосудов, мышц, голосовых связок. При этом определяющее значение на опасность оказывает частота тока:

  • 40―60 Гц — наибольшая угроза поражения, возможность фибрилляции сердца; дальнейшее повышение интенсивности колебаний зарядов приводит к снижению риска, но вероятность гибельности сохраняется в пределах всего диапазона промышленных частот — до 500 Гц;
  • свыше 10 кГц начинаются ТВЧ — они безопасны до уровня 1 мГц относительно внутренних поражений, что обусловлено скин-эффектом, но вызывают ожог и угроза от них не меньше, чем от постоянных или переменных предшествующей группы;
  • токи высокой частоты сопровождаются электромагнитными излучениями — с этой стороны существует возможность негативного воздействия на живые организмы.

На относительной безопасности ТВЧ основано их применение в медицине для физиотерапевтических процедур. Тяжесть поражения электротоком зависит не только от физических параметров заряда, но и от состояния организма человека.

Измерительные приборы

Для определения интенсивности колебаний используют осциллограф, на котором можно увидеть частоту и форму сигнала. Существуют также специальные приборы — частотомеры. В них применяют следующие способы определения параметра:

  • перезаряд конденсатора — среднее значение силы тока пропорционально соотносится с его интенсивностью и измеряется магнитоэлектрическим амперметром со шкалой в герцах;
  • дискретный счёт — фиксирование импульсов нужной частоты за определённый период, получают данные достаточной точности: погрешность в пределах 2%, этого хороший показатель для бытового применения прибора;
  • резонансный метод основан на одноимённом электрическом явлении, возникающем в цепи с настраиваемыми элементами; частота — больше 50 Гц, определяется по шкале регулировочного механизма.
Читайте также:
Применение ЖБИ колодцев в строительстве

Ещё один известный способ применяется в осциллографах, основан на смешивании и сравнении эталонного параметра с измеряемой частотой. Вследствие наложения возникают биения, а при выравнивании на экране устанавливается определённая фигура. Рассчитывают искомую характеристику по зафиксированному графику посредством математических формул.

Переменный электрический ток

Переменный ток (AC – Alternating Current) – электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC – Direct Current – постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин – значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f – величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz). Частота f = 1 /T

Циклическая частота ω – угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ – величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

С учётом начальной фазы:

i = Iampsin(ωt + ψ); u = Uampsin(ωt + ψ)

Здесь Iamp и Uamp – амплитудные значения тока и напряжения.

Амплитудное значение – максимальное по модулю мгновенное значение за период.

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.

Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.

Читайте также:
На каких отделочных материалах можно экономить

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp (Uamp) среднеквадратичное значение определится из расчёта:

Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1

Переменный электрический ток

Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания.

Переменный ток — вынужденные электромагнитные колебания.

Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду:

Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний.

Частота переменного тока — это количество колебаний за 1 с.

Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц.

Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока.

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙10 8 м/с).

Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже).

Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции.

Численно магнитный поток определяется формулой:

При равномерном вращении рамки угол α увеличивается пропорционально времени:

где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически:

Φ = B S cos . 2 π n t

Здесь множитель 2 π n представляет собой число колебаний магнитного потока за 2 π секунд. Это не что иное, как циклическая частота колебаний:

Φ = B S cos . ω t

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени:

e = − Φ ´ = − B S ( cos . ω t ) ´ = B S ω sin . ω t = ε m a x sin . ω t

ε m a x — амплитуда ЭДС индукции, равная:

Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса:

u = U m a x sin . ω t

Читайте также:
Синтетические ковры: описание с фото, отзывы, плюсы и минусы

u = U m a x cos . ω t

где U m a x — амплитуда напряжения (максимальное по модулю значение напряжения).

Сила тока меняется с той частотой, что и напряжение — ω . Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле:

i = I m a x sin . ( ω t + φ с )

где I m a x — амплитуда силы тока (максимальное по модулю значение силы тока), φ с — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса.

u = U m a x cos . ω t = 12 cos . 300 , 25 π = 12 √ 2 2 . . ≈ 8 , 5 ( В ) .

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u = U m a x cos . ω t

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i = u R . . = U m a x cos . ω t R . . = I m a x cos . ω t

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

I m a x = U m a x R . .

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p = ( I m a x cos . ω t ) 2 R

Вспомним из курса математики:

cos 2 . α = 1 + cos . 2 α 2 . .

p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos . 2 ω t > 0 , мощность в любой момент времени больше величины I 2 m a x R 2 . . . На протяжении второй четверти периода, когда cos . 2 ω t < 0 , мощность в любой момент времени меньше этой величины. Среднее за период значение cos . 2 ω t = 0 , следовательно, средняя за период мощность равна I 2 m a x R 2 . . .

Средняя мощность − p равна:

− p = I 2 m a x R 2 . . = − i 2 R

Пример №2. Сила переменного тока в цепи меняется по закону i = I m a x cos . ω t . Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p = ( I m a x cos . ω t ) 2 R = 10 ( 1 · cos . ( 100 π · 1 ) 2 = 10 ( Д ж )

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

− i 2 = I 2 m a x 2 . .

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I = √ − i 2 = I m a x √ 2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U = √ − u 2 = U m a x √ 2 . .

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P = ( I m a x √ 2 . . ) 2 R = I 2 m a x 2 . . R = 2 2 2 . . · 5 = 10 ⎛ ⎝ Д ж ⎞ ⎠

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = Ucos ωt, где U = 5 В, ω = 1000π с – 1 . Определите период колебаний напряжения на конденсаторе.

Ссылка на основную публикацию