Принципиальная схема твердотельного реле на 12В

Подключение твердотельного реле (схема)

Элементы коммутации в электрических цепях оборудования различного назначения оказывают большое влияние на качество работы. Поэтому им уделяется повышенное внимание, реле постоянно совершенствуются их надежность и сроки службы увеличиваются. Одним из наиболее эффективных видов реле является твердотельные изделия. Читайте также статью ⇒ Реле напряжения.

Назначение и область применения твердотельных реле

Твердотельные изделия предназначены для обеспечения замыкания и размыкания участков в высоковольтных и низковольтных электрических цепях. Они выполняют ту же функцию что и обычные реле с механическими размыкателями контактов на основе электромагнитной катушки. Основное отличие в том, что оно не имеет механических контактов и электромагнита, коммутация осуществляется полупроводниковыми приборами.

Область применения таких реле та же что и обычных, используются при необходимости коммутации элементов индуктивной нагрузки:

  • В системах нагрева с электрическими тэнами;
  • В производственных технологиях, где необходимо поддерживать стабильную температуру;
  • Для коммутации цепей систем управления в комплексе различного оборудования;
  • В некоторых случаях твердотельными реле заменяют бесконтактные пускатели реверсного типа;
  • В схемах управления электродвигателями;
  • В системах контроля и диагностики оборудования, нагрева трансформаторов и других элементов с установленными пределами определенных параметров в процессе эксплуатации;
  • В схемах управления уровнем освещения на различных объектах.

Невозможно перечислить все варианты, сфера применения этих изделий очень обширна.

Преимущества твердотельных реле

В виду явных преимуществ, твердотельные реле в сравнении с электромагнитными образцами, успешно вытесняют последние, рассмотрим, в чем их основные достоинства:

  • Конструкции твердотельных реле имеют компактные размеры, надежную герметичность, стойки к механическим ударам и эксплуатации в условиях сильной вибрации;
  • Надежность работы этих изделий такова, что производители гарантируют число срабатываний больше миллиарда раз;
  • Работа прибора абсолютно бесшумна, так как отсутствует электромагнит и трескучая группа механических контактов;
  • Высокое быстродействие;
  • При срабатывании отсутствуют побочные электромагнитные излучения, создающие помехи для электроники и радиотехнической аппаратуры;
  • Твердотельные реле практически универсальны, имеют высокую степень защит. Могут применяться на объектах с любыми производственными условиями, в бытовых условиях или на взрывоопасных участках;
  • Сроки эксплуатации рассчитаны на десятки лет, при этом не требуется регулярного технического обслуживания;
  • Так как отсутствуют электромагниты, то потребление электроэнергии твердотельных реле на 90% ниже контактных.

К достоинствам можно отнести и удобную конструкцию для монтажа в различных местах установки.

Конструкция твердотельных реле и принцип работы

Название твердотельное, указывает на структуру конструкции реле, схема которого собрана из полупроводниковых приборов на печатных платах, тиристорах, транзисторах или симисторах. Все элементы помещаются в жесткий корпус, ингда заливаются эпоксидной смолой, таким образом, получается неразборная жесткая конструкция. С наружи выведены только контакты для управления и коммутации подключаемой нагрузки.

 Разные модели твердотельных реле

Разные модели твердотельных реле

Фактически каждый отдельно взятый тиристор или транзистор является бесконтактным твердотельным реле. При подаче управляющего напряжения на полупроводниковый кристалл p-n-p переходы в его структуре открываются, пропуская ток, при снятии управляющего напряжения закрываются, останавливая поток электронов.

Обычное реле с электромагнитной катушкой и механическими контактами работает по такому же принципу. При подаче напряжения на электромагнитную катушку сердечник втягивается, размыкает или замыкает контакты в зависимости от конструктивных особенностей изделия.

Так как габариты полупроводников имеют малые размеры в одном корпусе можно разместить, комплексную систему коммутации групп контактов различного назначения с схемами на замыкание или размыкание. При этом используются транзисторы, симисторы, тиристоры с р-np или npn переходами, в зависимости от функционального назначения применяют соответствующие твердотельные реле.

Структурная схема твердотельного реле с основными элементами

Изделия отличаются по техническим параметрам по величине коммутируемого тока, напряжению управления и многим другим параметрам. В большинстве случаев сигнал управления на входе предается оптическим путем, через подсветку светодиодом, фотодиода для включения коммутации.

Виды твердотельных реле и схемы подключения

Разновидности твердотельных реле разделяют по следующим признакам:

  • По характеристикам напряжения управляющего сигнала постоянное или переменное, его величина;
  • По напряжению на линии коммутации, так же переменного или постоянного тока;
  • По количеству фаз, в цепях переменного тока, однофазные или трехфазные реле;
  • По схемам коммутации в трехфазных цепях могут быть варианты с реверсом и без него;
  • По конструкции корпуса, для монтажа на плоскую поверхность, на дин – рейку или универсальные.

В некоторых случаях в одном корпусе с реле устанавливаются инверторы напряжения, тогда на входе изделия переменное напряжение а на выходе получается постоянное или наоборот, в зависимости от назначения инвертора. Полупроводниковые реле способны коммутировать нагрузку в цепи с токами до сотен ампер.

 Твердотельное реле для коммутации трехфазной цепи переменного тока

Твердотельное реле для коммутации трехфазной цепи переменного тока

Такие изделия применяют для управления работой асинхронных электродвигателей с питанием 380/220В. С левой стороны две клеммы для подачи управляющего напряжения постоянного тока с указанием полярности, величина от 4 до 32 В.

Монтаж твердотельного реле (схема установки)

На контакты RST подключаются три фазы по 220В от РЩ, к клеммам UVW провода, идущие к электродвигателю. При кратковременной подаче управляющего напряжения постоянного тока 12 или 24В все три фазы замыкаются, и ток поступает на обмотки электродвигателя.

Существуют реле с более простой схемой коммутации одной фазы, для подключения осветительной системы, нагревательных приборов и другого оборудования с питанием от 220 В.

Читайте также:
Раздвижные стеклянные двери для веранды, террасы, беседки : распашные модели из поликарбоната, как сделать

Монтаж твердотельного реле (схема установки)

Такое реле коммутирует однофазные цепи, принцип действия аналогичный на контакты управления подается напряжение постоянного тока от 3 до 18 В, в результате чего открывается тиристор пропуская ток через коммутируемую фазу.

На корпусе указаны основные технические характеристики этой модели. Напряжение в цепи коммутации должно быть не более 240 А, токи нагрузки не более 2.5А.

Схем коммутации много вариантов это зависит от функционального назначения систем в которых они используются.

Схем коммутации много вариантов это зависит от функционального назначения систем в которых они используются.

Монтаж твердотельного реле (схема установки)

В данной схеме в цепи управления и коммутации используются напряжения с постоянным током. Такие варианты часто применяются в схемах электроснабжения автомобильного транспорта, где источником питания является аккумулятор.

Поэтапный процесс подключения ТТР (твердотельных реле)

Рассмотрим один из простейших вариантов подключения полупроводникового реле в систему освещения:

  • В распределительной коробке, РЩ или на другом участке цепи делается разрыв фазного провода;
  • В этот разрыв подключается реле, контактами для коммутации цепи;
  • На контакты управления с соблюдением полярности подключаются провода от источника питания постоянного тока, это может быть аккумулятор, трансформаторный или полупроводниковый инвертор.

Монтаж твердотельного реле (схема установки)

Подключение цепи управления делается через кнопку пуска, так как достаточно кратковременно подать напряжение для открытия тиристора и замыкания цепи. При подаче управляющего напряжения и замыкании цепи коммутации светится светодиодный индикатор, при размыкании он гаснет.

  • Обычно реле и блок питания для цепи управления крепятся к плоской поверхности саморезами или в распределительных шкафах на дин-рейку.

Такие схемы коммутации в системах освещения в целях безопасности производства эффективно применяются на объектах химической, горнодобывающей промышленности. Везде где есть вероятность взрыва в загазованном пространстве, отсутствие искрящих механических контактов существенно снижает вероятность взрыва. Читайте также статью ⇒ Реле тока приоритетное.

Критерии выбора твердотельных реле

Выбор полупроводникового реле определяет несколько факторов:

  • Функциональное назначение схемы с нагрузкой, в которой его планируется использовать;
  • Условия эксплуатации, влажность, окружающая температура;
  • Технические параметры цепи питания схемы оборудования.

В первую очередь определяется ток, проходящий через цепи коммутации, для этого мощность нагрузки надо поделить на напряжение питания.

Если в системе подключается нагревательный тэн мощностью 1.5 кВт, контакты реле должны выдерживать ток 1500Вт 220В = 6,8 А. Но обычно для запаса выбирают на 25% больше расчетной величины, это делается по причине неравномерного потребления тока на различных этапах работы нагрузки. Приборы могут быть индуктивной или реактивной нагрузкой в цепи, реактивная нагрузка в момент включения имеет пиковый скачек по величине потребляемого тока. Кратковременные скачки тока существенно снижают сроки службы полупроводников в реле, поэтому их устанавливают с запасом мощности. Характер нагрузки приборов исследован, рассчитан специальный коэффициент, на который умножается расчетное значение тока. Log into several Dark Web marketplaces using only the alternative link Darknet Marketplaces it stores active urls of most popular Darknet marketplaces

Коммутируемая реле нагрузкаКоэффициент
Лампы со спиралью накаливания6
Светодиодные светильники1
Схемы управления двигателем, драйверы6
Люминесцентные экономичные лампы10
Понижающие трансформаторы20
Нагревательные элементы, ни ромовые спирали, тэны, кипятильники1

В нашем случае нагревательный элемент с коэффициентом 1 х 6.8 = 6.8А.

Для индуктивных нагрузок желательно кратковременный процесс переключения, поэтому управление реле делаются со схемами, где полупроводниковые элементы открываются в любой момент фазы или при нулевом ее значении.

Монтаж твердотельного реле (схема установки)

График управления коммутацией при прохождении током нулевого уровня

Совет №1 Переключение в нулевой момент эффективно в радиоэлектронных системах, где исключается возникновение электромагнитного импульса создающего помехи.

Монтаж твердотельного реле (схема установки)

Фазное управление коммутацией

Совет №2 Там где требуется плавное увеличение токовой нагрузки целесообразно использовать реле с переменным сопротивлением. При увеличении управляющего напряжения увеличивается напряжение не стороне коммутации.

Для управления в системах цифровой техники логично использовать реле с управляющим напряжением 3-5В постоянного тока, так как сигналы управления в этих схемах имеют такие параметры.

Большое значение имеет температура окружающей среды, полупроводниковые элементы эффективно работают до 80 ̊С. Поэтому в некоторых случаях реле устанавливают на металлический радиатор, который отводит тепло или делают принудительную вентиляцию. В любом случае чтобы реле работало долго и надежно надо учитывать все детали условия эксплуатации и подбирать соответствующие технические характеристики.

Использование андруино

Для расширения возможностей и сфер применения твердотельных реле широко используют универсальные платы с процессором андруино, которые позволяют управлять переключением самых разных устройств. Это тот случай, когда сигнал управления 3-5В, процессор подключается к компьютеру, с соответствующим программным обеспечением которое управляет работой твердотельных реле, посылая на вход сигналы управления.

Программное обеспечение можно корректировать самостоятельно, методика С++ не сложная, доступна для обычного обывателя не имеющего специального образования программиста и навыков в электронике. Эта тема требует отдельного детального рассмотрения. Управление осуществляется работой различных устройств:

Ошибки, допускаемые при использовании твердотельных реле

  • Чаще всего потребители не правильно делают выбор реле по техническим характеристикам, в результате чего оно не работает или быстро выходит из строя;

Характеристики входных сигналов управления твердотельных реле различных производителей

Марка реле/ параметрысерия протон импульс 5П19.20Crydom H12D4825D PBFTeledyne Relays SD48D50A2Carlo Gavazzi RA2A48D25Celduc SOB562460
Величина напряжения постоянного тока в В.10 — 304 — 1510 – 304.5 — 323.5 — 32
Минимальная амплитуда срабатывания в В.1111-21-2
Входной ток мА.10 — 25133До 1013
Читайте также:
Самодельный квадроцикл из мотоцикла ИЖ Юпитер 5

Характеристики цепей коммутации этих производителей

Часто задаваемые вопросы

  1. Как защитить реле от скачков тока и напряжения в аварийных ситуациях?

В первую очередь устанавливайте изделия, которое соответствует по техническим параметрам цепи, в которой производится коммутация. При коротком замыкании большинство реле выдерживают повышенную нагрузку до 10 мс, в этом случае рекомендуется ставить полупроводниковые предохранители, которые отключают цепь за 2 мс. И реле и предохранители стоят не дешево, но защита дорогостоящего оборудования вполне оправдывает затраты.

  1. Какое пиковое напряжение реле надо выбрать в цепях 220В?

Реле через которое коммутируются цепи с переменным напряжением в 220В рекомендуется выбирать с 9 классом по напряжению, оно выдерживает пиковые скачки до 900В.

Твердотельное реле своими руками

Для многих схем силовой электроники твердотельное реле стало не просто желательно но и необходимо. Их преимущество – в количестве срабатываний несоизмеримо больших, по сравнению с электромеханическими, на порядок (а на практике и того больше).

До изготовления твердотельного реле я обычно изготавливал цепочки из симистора и схемы управления с гальванической развязкой типа симистороной оптопары MOC30***. Для примера будем использовать следующие (базовые) компоненты:

  1. Симисторная оптопара MOC3083 (VD1)
  2. Симистор с изолированным анодом марки BT139-800 16A (V1 от Philips)
  3. Сопротивление для ограничения тока через светодиод MOC3083 (R1 750Ом 0,5Вт)
  4. Светодиод индикации АЛ307А (LD1)
  5. Резистор на управляющий электрод симистора 160 Ом (R2 , 0.125Вт)

Схема твердотельное реле

Рис 1

Твердотельное реле – эта как бы инкапсуляция такой цепочки. Для изготовления твердотельного реле воспользуемся рекомендациями предложенными в сборнике [1 ] . В ней автор рекомендует для повышения надежности электронных устройств (и самодельных в том числе) заключать их в эпоксидный брикет, приводя подробное описание данной технологии. Посмотрим, что нам понадобиться для изготовления твердотельного реле по этой методике. (см. фото 1). Отметим попутно, что во время написания статьи [ 1 ] клеевые пистолеты ещё не были столь распространены как сейчас.

Итак, выбираем подложку из металла, который быстро проводит тепло, например алюминий. Размер и толщина подложки выбираются исходя из количества тепла, которое потребуется отвести от симистора с учетом того , что сама подложка для этой цели, может быть установлена на металлической поверхности. Далее выбираем опалубку для заливки, с таким расчетом, чтобы внутри нее разместить все элементы указанной цепочки. В качестве опалубки используем любые удобные элементы из пластика напр. цилиндр от пластиковой трубы, часть пластикового короба от кабельного лотка, в моем случае опалубка изготовлена из части пенала для принтерных расходников. Далее приклеиваем пистолетом опалубку к подложке, и заклеиваем отверстия и щели, если они есть. Помещаем схему, спаенную и проверенную. Здесь необходимо отметить, что выводы у симистора определяются не всегда однозначно. Чтобы проверить открывается ли симистор от протекания тока через светодиод оптопары MOC3083, в большинстве случаев, можно узнать (без подключения напряжения 220В), подцепившись тестером на мегаомах к выходным концам симистора схемы. При открывании симистора сопротивление будет падать от десятком мегаом до единиц килом (по тестеру).

Для симистора, в обязательном порядке, делаем промежуточный слой между спинкой корпуса и подложкой из теплопроводной пасты марки КПТ-8. Если у симистора анод не является изолированным, необходима также изоляционная прокладка, например из пластинки слюды, вырезанной по размеру корпуса и обработанной пастой КПТ с обеих сторон (все элементы схемы не должны иметь электрического контакта с подложкой!). Далее, прижав корпус симистора, фиксируем его на подложке с помощью клеевого пистолета (рис 2).

Укладываем остальные части схемы, обращая внимание, чтобы они не касались металлической подложки, а находились как бы «на весу». Готовим компаунд для заливки формы в отдельной емкости. Для этого основной компонент эпоксидки смешиваем с порошком алебастра, не добавляя пока отвердитель. Следует отметить, что алебастр добавляем не только для увеличения объема компаунда, но и для снижения текучести эпоксидки. В противном случае раствор ЭДП будет вытекать через мельчайшие отверстия в форме. Добавляем отвердитель к полученной массе компаунда и вновь перемешиваем. Масса должна сохранять текучесть. Заполнив форму не следует беспокоиться об образовавшихся неровностях на поверхности брикета. (рис 3).

Если расположить его на горизонтальной поверхности, то силы гравитации сделают поверхность достаточно гладкой в течении получаса (рис 4) и имеющую цвет светлого кофе. Автор далек от мысли, чтобы настаивать на указанных материалах и технологии, как единственно возможной. Наверняка, например, подойдет использование клея типа «жидкие гвозди» или полиуретановая пена в качестве компаунда, лишь бы материал обладал низкой электропроводностью и достаточной электрической прочностью.

Теперь внимательно посмотрим на исходную схему. Если подключать новоиспеченное реле к Arduino и т.п. устройствам на микроконтроллерах с питанием не более 5В, этой схемы будет достаточно. Что же делать , если необходимо расширить диапазон управляющих напряжений, скажем, от 5 до 24 В? Схемотехника MOC30** позволяет нам это сделать без дополнительных ухищрений, поскольку диапазон тока через светодиод оптопары простирается там до 50 мА. Сложнее обстоит дело с индикаторным светодиодом, таким, например, как АЛ307А . Согласно рекомендациям производителей: не следует устанавливать постоянный прямой ток /ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА. Т.Е. нужно каким-то образом организовать схему так, чтобы ток, протекающий по цепи АЛ307 – 1,2 MOC3083 мало зависел бы от прилагаемого напряжения. Кажется , что наиболее просто этого добиться подключив стабилитрон D после балластного сопротивления R1, учитывая тот факт, что напряжение на светодиоде, как правило линейно зависит от протекаемого тока, начиная от некоторого уровня (напр. 1,6 В) . В этом случае стабилитрон с опорным напряжением 3,3В откроется при достижения опорного, и будет «стравливать» избыточный ток через себя.

Читайте также:
Обогреватели Пион инфракрасного типа: принцип работы и основные преимущества

Но более эффективны в этом случае схемы с питанием данной цепи источником тока [ 2, 3 ].

Следуя рекомендациям указанных источников, построим схему с питанием стабильным током в диапазоне 7—14 мА и в диапазоне питающих напряжений 4—24В.

Рис 2

Освоив данную технологию и «набив руку», без сомнения, можно изготавливать твердотельные реле в больших количествах словно «горячие пирожки».

Твердотельное Реле Схема Принципиальная

Для проверки открытия симистора необходимо использовать мегомметр. Это устройство бывает двух видов: внутреннего и внешнего.

Описание В отличие от электромеханических реле EMR , которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, но вместо этого использует электрические и оптические свойства полупроводниковых полупроводников, выполняет его вход в функции изоляции и переключения выхода. Между цепями управления и нагрузкой качественная изоляция.

Однако твердотельные реле с очень высоким номинальным током плюс А все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотдаче, и, как таковые, все еще используются более дешевые электромеханические контакторы.
Пару слов о твердотельных реле.

В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Оно подобно диммеру умеет регулировать мощность нагрузки выходное напряжение , для этого на вход подают аналоговый сигнал — напряжение, ток или подключают переменное сопротивление.

Их главный плюс — практически полное отсутствие э-м помех, малый показатель шума при работе, экономия в плане потребления электричества и оперативность самой работы. С его помощью происходит притягивание контактов.

Отличия несущественные, на работу не влияют никак.

Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники — силовые транзисторы, симисторы, тиристоры.

ТВЕРДОТЕЛЬНОЕ РЕЛЕ ? ОШИБОЧКА ОДНАКО 🙂

Преимущества и недостатки

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Подходит для управления резистивной, емкостной и индуктивной нагрузкой.

В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле.

Но если токи высокие, будет происходить сильный нагрев элементов.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования. Схема для подключения реле Все полупроводниковые устройства такого рода поделены на участки, среди которых: входная часть, оптическая развязка, триггер, а также цепи переключения и защиты.

При этом пиковые кратковременные значения тока могут достигать величины А.

Переключение происходит с высокой скоростью. Заливка компаундом Преимущества и недостатки В отличие от других типов реле, твердотельное лишено подвижных контактов.

Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного SPST-NO режима работы электромеханического реле. Опто-триачный изолятор MOC имеет те же характеристики, но со встроенным обнаружением пересечения нуля, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.
лекция 357 Твердотельное реле

Особенности процесса изготовления

Нагрузка нагревательного элемента составляет Вт.

Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.

В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.

Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.

Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.

Похожие записи

Поэтому существует максимально возможная задержка выключения между удалением входного сигнала и отключением тока нагрузки в один полупериод. Между цепями управления и нагрузкой качественная изоляция. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. Такой же принцип регулировки используется в бытовых диммерах для освещения. Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается.

Читайте также:
Освежители воздуха в квартиру: 4 за и 4 против

Видео: тестирование твердотельного реле. Нужно выделить такие свойства твердотельных реле: При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства. В твердотельных моделях эту роль выполняют тиристоры, транзисторы и симисторы.

С его помощью происходит притягивание контактов. Защита может находиться как внутри корпуса реле, так и отдельно. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор. В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом.
Твердотельное реле вместо контактора.

Виды устройств

Для корректной работы твердотельного реле при маленьких токах нагрузки соизмеримых с током утечки необходимо устанавливать шунтирующее сопротивление параллельно нагрузке. В соотношении с методом коммукации выделяют: устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции; реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание; реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. А теперь давайте рассмотрим более детально процесс изготовления устройства.

Параметры мощности — от 3 до 32 Вт.

Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 — источник напряжения управления; 2 — оптопара внутри корпуса реле; 3 — источник тока нагрузки; 4 — нагрузка Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия. Выбор и покупка твердотельного реле Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Характеристики твердотельного реле

Сначала давайте рассмотрим входные характеристики оптоизолятора MOC доступны другие опто-триаки. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор. От типа и особенностей развязки зависят общие конечные характеристики прибора и особенности его работы.

Отличия несущественные, на работу не влияют никак. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

Комментарии

Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор. Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Проверим это на практике, допустим вы столкнулись с таким изделием как на рисунке ниже, и хотите узнать, что оно собой представляет. Охлаждение Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах.
Твёрдотельное реле. Что это такое и как работает? Испытание на практике

Твердотельное реле своими руками: инструкция по сборке и советы по подключению

Твердотельное реле (ТТР) – прибор из серии электронных компонентов немеханического действия. Отсутствие механики открывает больше возможностей любителям электроники сделать твердотельное реле своими руками для личного пользования.

Рассмотрим такую возможность подробнее.

Конструкция и принцип действия ТТР

Если большая часть подобной электроники традиционно содержит подвижные детали контактных групп, твердотельное реле таких деталей не имеет совсем. Коммутация цепи схемой устройства осуществляется по принципу электронного ключа. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники – силовые транзисторы, симисторы, тиристоры.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования.

Твердотельные реле

Промышленным производством выпускаются реле твердотельные различной конфигурации, предназначенные под самые разные условия практического применения. Выбор модификаций обширный

В рамках плотного изучения прибора сразу же следует выделить преимущественные стороны ТТР:

  • коммутация мощной нагрузки;
  • высокая скорость переключения;
  • идеальная гальваническая развязка;
  • способность кратковременно держать высокие перегрузки.

Среди механических конструкций найти реле с подобными параметрами реально не представляется возможным. Вообще, преимущества относительно механических собратьев у твердотельных реле выражаются внушительным списком.

Твердотельное и механическое реле

Два электронных прибора, функционально обеспечивающих коммутацию цепей: слева сделан на основе твердотельной конструкции, справа — традиционная механическая система переключения

Условия эксплуатации для ТТР практически не ограничивают применение этих устройств. К тому же отсутствие подвижных механических деталей благоприятно сказывается на продолжительности службы приборов. Так что есть все основания, чтобы заняться твердотельным реле – собрать устройство своими руками.

Однако, справедливости ради, наряду с положительными моментами следует отметить свойства реле, характеризуемые как недостатки. Так, для эксплуатации мощных приборов, как правило, требуется дополнительный компонент конструкции, который предназначен отводить тепло.

Читайте также:
Проекты летних домиков для дачи с верандой, террасой и летней кухней

Твердотельные реле на радиаторах

На случай коммутации мощной нагрузки реле твердотельного исполнения практически всегда дополняются мощными радиаторами охлаждения. Этот момент несколько усложняет применение ТТР

Радиаторы охлаждения твердотельных реле имеют габаритные размеры в несколько раз превосходящие габариты ТТР, что снижает удобство и рациональность монтажа.

Приборы ТТР в процессе эксплуатации (в закрытом состоянии) дают обратный ток утечки и показывают нелинейную вольт-амперную характеристику. Не все твердотельные реле допустимо использовать без ограничений в характеристиках коммутируемых напряжений.

Твердотельное реле постоянного тока

Конструкция для применения только в схемах, где питание осуществляется постоянным током. Обычно эти приборы отличают малые габариты и небольшая мощность коммутации

Отдельные виды устройств предназначены коммутировать только постоянный ток. Внедрение твердотельных реле в схему обычно требует обращения к дополнительным мерам, направленным на блокировку ложных срабатываний.

Твердотельные реле часто можно встретить в общем электрощитке квартиры.

Как работает твердотельное реле?

Управляющий сигнал (обычно напряжение низкого уровня, исходящее, к примеру, от контроллера управления) подаётся на светодиод оптоэлектронной пары, присутствующей в схеме ТТР. Светодиод начинает излучать свет в сторону фотодиода, который в свою очередь открывается и начинает пропускать ток.

Схема твердотельного реле

Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 – источник напряжения управления; 2 – оптопара внутри корпуса реле; 3 – источник тока нагрузки; 4 — нагрузка

Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Ключ открывается, замыкает цепь нагрузки.

Так работает функция коммутации прибора. Вся электроника традиционно заключена в монолитный корпус. Собственно, поэтому устройство и получило название твердотельного реле.

А о том, как подключить твердотельное реле можно прочесть в этом материале.

Разновидности твердотельных переключателей

Весь существующий ассортимент приборов условно можно разделить по группам, исходя из категории подключаемой нагрузки, особенностей контроля и коммутации напряжений.

Таким образом, в общей сложности наберётся три группы:

  1. Устройства, действующие в цепях постоянного тока.
  2. Устройства, действующие в цепях переменного тока.
  3. Универсальные конструкции.

Первая группа представлена приборами с параметрами рабочих управляющих напряжений 3 – 32 вольта. Это относительно малогабаритная электроника, наделённая светодиодной индикацией, способная функционировать без перебоев при температурах -35 / +75 ºС.

Однофазное твердотельное реле

Широко распространённое исполнение электронного прибора для применения в однофазной электрической сети. Также встречаются иные варианты конструкций, но значительно реже

Вторая группа – устройства, предназначенные под установку в сетях переменного напряжения. Здесь представлены конструкции ТТР для установки в сетях переменного тока, управляемые напряжением 24 – 250 вольт. Есть устройства, способные коммутировать нагрузку высокой мощности.

Третья группа – приборы универсального назначения. Схемотехника этого вида устройств поддерживает ручную настройку на использование в тех или иных условиях.

Если отталкиваться от характера подключаемой нагрузки, следует выделить два вида твердотельных реле переменного тока: однофазные и трёхфазные. Оба вида рассчитаны на коммутацию достаточно мощной нагрузки при токах 10 — 75 А. При этом пиковые кратковременные значения тока могут достигать величины 500 А.

Трёхфазное твердотельное реле

Широко распространённый вариант исполнения для применения в трёхфазной электрической сети. Часто используется в качестве линейного регулятора мощных электрических нагревателей (ТЭН)

В качестве нагрузки, коммутируемой твердотельными реле, могут выступать ёмкостные, резистивные, индукционные цепи. Конструкции переключателей позволяют без лишнего шума, плавно управлять, к примеру, нагревательными элементами, лампами накаливания, электродвигателями.

Надёжность работы в достаточной степени высока. Но во многом стабильность и долговечность твердотельных реле зависит от качества производства изделий. Так, устройства, выпускаемые под некой торговой маркой «Impuls», часто отмечаются непродолжительным сроком службы.

С другой стороны, изделия фирмы «Schneider Electric» не оставляют повода для критики.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Реле ТТР своими руками

Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Принципиальная схема реле ТТР

Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Проверка реле тестером

Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Читайте также:
Сколько варить очищенные замороженные кальмары?

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Изготовление корпуса реле

Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» — по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Посадка симистора на основание

Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Крепление ключевого элемента

Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Залитый компаундом корпус реле

Так выглядит готовый экземпляр твердотельного реле, собранного своими руками. Несколько необычно и не очень презентабельно, но достаточно надёжно

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Выводы и полезное видео по теме

Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:

Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:

Самостоятельное изготовление твердотельных реле — вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.

Твердотельные реле. Схемы подключения

В этой статье обсудим схемы подключения твердотельными реле (ТТР), и способы управления ими.

Напоминаю, для тех кто не в курсе – что такое твердотельное реле и как оно работает – обратитесь к более старой моей статье О принципах работы твердотельных реле.

Схемы включения подобных реле не очень сложны, но, как и везде, есть свои особенности.

Твердотелки – надо ли их использовать?

Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:

У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.

Другой случай, когда такие реле не нужны:

Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.

О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.

Читайте также:
Особенности выбора жалюзи

Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.

Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.

Различия схем включения реле

По виду подключения твердотельные реле можно разделить на следующие категории:

По управлению (виду входного управляющего сигнала):

  • постоянное напряжение (встречается чаще всего),
  • переменное напряжение,
  • постоянный ток 4-20 мА,
  • переменный резистор.

По виду коммутируемого тока

  • твердотельные реле переменного тока
  • твердотельные реле постоянного тока

По количеству фаз

  • одна фаза
  • три фазы (как правило, фактически это две фазы)

В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.

Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))

Схемы подключения твердотельных реле

Теперь рассмотрим подключение твердотельного реле подробнее.

Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:

Схема включения твердотельного реле

Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.

С током не всё так просто, но об этом ниже.

Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.

Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!

Ещё раз напоминаю –

НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.

НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.

Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.

Теперь подробнее по управлению твердотелками.

Схемы с управлением от транзистора

Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.

Управление транзистором PNP, НО реле

Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.

Управление транзистором PNP, НО реле

Управление транзистором PNP, НО реле

Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Управление транзистором NPN, НЗ реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.

Управление транзистором NPN, НО реле

Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.

Управление резистором

Плавно подходим к переменному току.

Управление переменным резистором

Управление переменным резистором

Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.

Схема с фиксацией и управлением кнопками (защелка)

Управление твердотельным реле с фиксацией включения

Управление твердотельным реле с фиксацией включения

Схема включения интересна тем, что можно включать – выключать нагрузку, используя только две кнопки – Пуск и Стоп. То есть, схема такая же, как и при использовании обычного реле. Точнее, магнитного пускателя. Важно, что управляющее напряжение равно напряжению питания нагрузки.

Схема нарисована тайваньскими инженерами, попробуем разобраться в ней.

Кстати, её же можно использовать для коммутации и переменного, и постоянного тока.

Схема работает таким образом. Исходно управляющее напряжение поступает на клемму 3 ТТР с источника питания через НЗ контакты кнопки Стоп. При нажатии кнопки Пуск (слева на схеме) напряжение с другого полюса источника поступает через НО контакты на клемму 4 ТТР. Реле включается, напряжение на клемме 1 появляется, и подается через резистор (вверху схемы) на клемму 4. Прошла доля секунды, кнопку Пуск можно отпускать, нагрузка питается до тех пор, пока не будет нажата кнопка Стоп.

Схемы включения трехфазных твердотельных реле

Трехфазное твердотельное реле, схема подключения.

Трехфазное твердотельное реле, схемы подключения.

Тут источник трехфазного напряжения – справа по схемам, нагрузка – слева. Управляющее напряжение может быть любым (переменным или постоянным).

Кроме того, коммутация может быть как по двум фазам, так и по трём, это важно! Подробнее ниже.

Реверсивные твердотельные реле

Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.

Читайте также:
Отделка гранитом: преимущества, способы и технология монтажа

Пример включения трехфазного реле – на фото ниже:

Включение трехфазного твердотельного реле

Включение трехфазного твердотельного реле

Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.

На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа – Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.

Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко 🙁 .

Выбор твердотельных реле, защита и особенности работы

Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.

Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.

Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.

Это как в звукотехнике. Ламповая техника при перегрузках чувствует себя нормально, только слегка “потеет”, а транзисторы начинают жутко искажать сигнал и могут выйти из строя. За это до сих пор так ценятся ламповые усилители, за их мягкий, бархатный звук на предельных мощностях. Другое дело, что источников качественного сигнала сейчас практически нет, всё заполонил mp3 128kbps, и то в лучшем случае. Но это тема отдельной статьи…

Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.

Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.

То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.

Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.

Напоследок – защита при КЗ

Производители рекомендуют использовать специальные предохранители для твердотельных приборов:

  • gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
  • gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
  • aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.

Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?

Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.

Кстати, гуру электрики и электропроводки, cs-cs.net, предлагает дома ставить автоматы только В класса. И некоторые производители – рекомендуют ставить В класс на электроплиты, водонагреватели – туда, где нет двигателей и пусковых токов.

Почему – поясню на графике.

Кривые отключения

Кривые отключения или токо-временные характеристики

Подробно про выбор защитного автомата рассказано в другой статье.

Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:

Автомат В6

Автомат с характеристикой В6 (обведено красным)

Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.

Пишите в комментариях, у кого какой опыт по применению!

Полезные файлы, возможно, написано информативнее, чем у меня:

• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 4116 раз./
• Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4626 раз./

Где купить твердотельные реле

Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.

Читайте также:
Рекомендации по выбору обоев с крупным рисунком

Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.

Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!

Твердотельное реле: устройство, принцип работы, схемы подключения

При организации логических схем управления оборудованием в качестве коммутаторов используются различные виды реле. В связи с развитием и совершенствованием полупроводниковых приборов на смену классическим логическим элементам пришло твердотельное реле (ТТР). Для чего используется, как устроен и как функционирует данный вид устройств, мы рассмотрим в данной статье.

Назначение

Сфера применения твердотельного реле достаточно обширна и охватывает самые разнообразные отрасли промышленности и народного хозяйства. Их используют в таких системах, где по условиям эксплуатации можно исключить периодический контроль состояния коммутатора. Твердотельные приборы устанавливаются в оборудовании с частыми коммутациями, где классические подвижные контакты не справляются с работой и перегорают. Или в таких электроустановках, где недопустимо искрообразование при разрывании или замыкании цепи контактной группой.

Помимо этого твердотельные реле характеризуются малыми габаритами, что делает их весьма привлекательной альтернативой для слаботочного оборудования. Они применяются в электронике и бытовых устройствах, а также труднодоступных местах, где после ввода прибора в работу отсутствует возможность технического обслуживания.

Основными направлениями, в которых вы часто встретите твердотельное реле, являются:

  • нагревательные электроприборы с ТЭНами, спиралями для контроля температуры нагревания;
  • контроль температурных режимов в технологических процессов;
  • отслеживание рабочих режимов силовых трансформаторов;
  • регулировка степени освещенности или включение освещения в зависимости от времени суток;
  • применение в качестве датчика движения;
  • включение и отключения электродвигателей, переключение различных режимов их работы;
  • в качестве электронных ключей силовых и слаботочных электроустановок;
  • как коммутаторы станочного оборудования, в котором нужна высокая частота срабатывания;
  • для переключения позиций в источниках бесперебойного питания.

Стоит отметить, что повсеместная автоматизация технологических процессов все чаще задействует твердотельное реле в качестве коммутационного устройства.

Устройство

Конструктивно твердотельное реле представляет собой расширенный вариант полупроводникового ключа. В состав устройства входят резисторы, транзисторы, симисторы или тиристоры, которые и лежат в основе их работы. За счет того, что вся конструкция имеет монолитную структуру – единый блок, реле и получило название твердотельного.

Устройство твердотельного реле

Рис. 1. Устройство твердотельного реле

Условно все устройство можно разделить на несколько блоков:

  • Входной узел – используется для подачи управляющего сигнала. В состав узла входит токоограничивающий резистор и устройство для передачи сигнала на коммутирующий элемент.
  • Триггерный узел – применяется для обработки получаемых сигналов. Как правило, является частью линии оптической развязки, но может устанавливаться и отдельно от нее.
  • Узел оптической развязки – осуществляет гальваническое разделение основного участка и контролирующего. Является неотъемлемой составляющей реле переменного тока. От конструктивных особенностей этого узла напрямую зависит принцип действия коммутатора.
  • Цепь коммутации – производит включение и отключение линии питания нагрузки. Функционирует по принципу запирания и отпирания p-n перехода, поэтому классического переключения в твердотельных реле не происходит.
  • Цепи защиты – осуществляют устранение помех, защищают твердотельное реле от перегрузок и токов коротких замыканий. По месту расположения бывают внутренней и внешней установки.
  • Выходной узел – используется для подключения нагрузки, как правило, представлен парой контактов или клемм.

Следует отметить, что в зависимости от типа твердотельного реле, состав основных блоков может существенно отличаться. Поэтому определенные модели могут обходиться без некоторых из вышеперечисленных узлов.

Принцип работы

В зависимости от вида твердотельного реле, может отличаться и принцип его действия. В основе работы лежит два сигнала – управляющий и управляемый, которые могут генерироваться и передаваться различным способом. Поэтому в качестве примера мы рассмотрим одну из разновидностей данного устройства, функционирующего посредством оптрона.

Принцип действия твердотельного реле

Рис. 2. Принцип действия твердотельного реле

Оптрон, в соответствии с п.1.1 ГОСТ 29283-92 осуществляет генерацию электромагнитных или световых импульсов с определенными параметрами. В соответствии с которым и происходит взаимодействие его компонентов. Конструктивно оптрон представляет собой оптическую пару – светодиод и фотодиод, установленные в разных блоках твердотельного реле.

При подаче питания на входной узел твердотельного реле начнется протекание тока через цепь светодиода. В результате чего световое излучение попадет на фотодиод. При достижении световым потоком заданной интенсивности, фотодиод установит рабочие параметры для цепи нагрузки и произведет коммутацию нагрузки.

Отличия от электромеханических реле

Отличия между электромеханическим и твердотельным реле

Рис. 3. Отличия между электромеханическим и твердотельным реле

Если рассматривать основные отличия, то они заключаются в принципе реализации логических операций. Так, в соответствии с п. 3.1.1 ГОСТ IEC 61810-7-2013 под электромеханическим реле следует понимать такое устройство, в котором операции производятся за счет движения механических элементов. В частности, на катушку индуктивности подается управляющий импульс, который создает достаточный электромагнитный поток для перемещения сердечника. Механически сердечник соединяется с контактной группой, которая замыкается и размыкается в зависимости от управляющего сигнала.

Твердотельное реле, в свою очередь, не имеет подвижных частей, а изменение логического состояния производится путем перевода полупроводникового элемента из открытого состояния в закрытое, и, наоборот. Поэтому основным отличием от электромеханических моделей является отсутствие подвижных контактов.

Читайте также:
Отопительные котлы на опилках

Технические характеристики

При выборе конкретной модели для замены вышедшего со строя твердотельного реле или для установки в новом оборудовании необходимо руководствоваться основными характеристиками прибора.

К основным параметрам относятся:

  • Класс и величина напряжения на входе и выходе устройства;
  • Сопротивление твердотельного элемента или потребляемая мощность;
  • Ток срабатывания – определяет рабочие параметры перехода из одного логического состояния в другое;
  • Перегрузочная способность – кратная величина номинальному току;
  • Электрическая прочность изоляции;
  • Тип монтажа – наличие крепежных деталей или пайка на выводы;
  • Материал, из которого изготовлено реле;
  • Габаритные размеры;
  • Наличие дополнительных функций.

Все характеристики твердотельных реле будут отличаться в зависимости от вида конкретного устройства.

Разделение по видам обуславливается как рабочими параметрами некоторых устройств, так и сферой их применения. Поэтому, классификация твердотельных реле осуществляется по нескольким факторам, определяющим тот или иной параметр.

Так, все логические элементы, в зависимости от рода тока, подразделяются на две группы – реле постоянного и переменного тока. Первые отличаются высокой надежностью и отлично справляются с поставленными задачами, как при низких, так и при высоких температурах. Второй вид обладает высокой скоростью срабатывания.

В зависимости от количества подключаемых фаз все твердотельные реле подразделяются на однофазные и трехфазные. Первый вид обеспечивает питание однофазной нагрузки или устройств постоянного тока. Трехфазные, в большинстве случаев, используются для питания электродвигателей, но встречаются коммутаторы и для других типов оборудования.

Трехфазные и однофазные твердотельные реле

Рис. 4. Трехфазные и однофазные твердотельные реле

По типу управления различают следующие виды:

  • Фазовое – плавно изменяет напряжение на выходе в процентном соотношении;
  • Мгновенное – производит переключение мгновенно;
  • При переходе через 0 – переключение осуществляется только при достижении синусоидой нулевого значения.

В зависимости от пропускаемой нагрузки, все устройства могут подразделяться на слаботочные и силовые. Первые устанавливаются в цепи управления, вторые используются для питания мощного бытового и промышленного оборудования.

Схемы подключения

На практике существует несколько вариантов подключения твердотельного реле к цепи питания и управления. Так, в зависимости от величины и рода питающего напряжения выделяют схему постоянного и переменного тока:

Схема подключения твердотельного реле на 230 В

Рис. 5. Схема подключения твердотельного реле на 230 В

Как видите, здесь от фазного и нейтрального проводника напряжение подается и на цепь управления (выводы 3 и 4), и к нагрузке. Через выводы 1 и 2 фазный проводник устанавливается в коммутацию твердотельного реле для питания потребителя. Включение и отключение производится путем замыкания контактной группы К1 в цепи управления.

Еще один вариант схемы – управление нагрузкой посредством низковольтного сигнала:

Питание твердотельного реле низким напряжением

Рис. 6. Питание твердотельного реле низким напряжением

В таком случае напряжение сети изначально подается на блок питание, где оно преобразуется и понижается. А затем через контакты К1 поступает в цепь управления твердотельного реле на выводы 3 и 4. Питание нагрузки происходит по тому же принципу, что и в предыдущем случае.

Помимо этого схемы подключения твердотельных реле подразделяются на две категории – нормально открытые и нормально закрытые. Первый вариант подразумевает такой принцип действия, когда подача напряжения на цепь управления подает напряжение к нагрузке.

Нормально открытая схема твердотельного реле

Рис. 7. Нормально открытая схема твердотельного реле

Второй вариант схемы при подаче напряжения в цепь управления отключает питание нагрузки.

Нормально закрытая схема твердотельного реле

Рис. 8. Нормально закрытая схема твердотельного реле

Помимо этого существует трехфазная схема питания для соответствующего типа нагрузки:

Трехфазная схема подключения твердотельного реле

Рис. 9. Трехфазная схема подключения твердотельного реле

Как видите на схеме, здесь используется трехфазное твердотельное реле. Для цепи управления используется пониженное напряжение, подаваемое от преобразователя. Линия трехфазного питания подключается к выводам A1, B1, C1, а трехфазный электродвигатель к выводам A2, B2, C2.

Достоинства и недостатки

Данный вид логических элементов характеризуется рядом плюсов и минусов в эксплуатации. К основным преимуществам твердотельных реле относятся:

  • Длительный срок эксплуатации в сравнении с электромеханическими моделями;
  • Может выполнять значительно больше коммутаций до наработки на отказ;
  • Бесшумность в работе;
  • Небольшой размер и вес;
  • Отсутствует механический износ контактной группы из-за их отсутствия;
  • Возможность установки в пожароопасных и взрывоопасных зонах за счет отсутствия искр в процессе коммутации;
  • Может работать без скачков напряжения и тока, чем в значительной мере нивелирует переходные процессы;
  • Внутреннее сопротивление практически не меняется в процессе эксплуатации;
  • Практически невосприимчивы к воздействию вибрации, оседанию пыли, электромагнитным полям.

Но, вместе с тем, твердотельные реле обладают и некоторыми недостатками. Существенной проблемой является нелинейная вольтамперная характеристика. В отключенном состоянии сопротивление p-n хоть и большое, но не бесконечное, чем обуславливаются токи утечки. Во включенном состоянии сопротивление полупроводника обуславливает нагрев твердотельного элемента и необходимость его принудительного охлаждения в силовых реле.

Также к недостаткам относят необходимость принятия мер против ошибочного срабатывания. При пробое твердотельные реле часто остаются во включенном состоянии, что создает опасность для оборудования и эксплуатационного персонала. За счет наличия p-n перехода пропускание тока в обратном направлении происходит не мгновенно. Одной из наибольших проблем является перегрузка, из-за которой реле мгновенно выходит со строя.

Ссылка на основную публикацию